流体力学与飞行力学

基于本征正交分解和代理模型的高超声速气动热模型降阶研究

  • 陈鑫 ,
  • 刘莉 ,
  • 岳振江
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 飞行器动力学与控制教育部重点实验室, 北京 100081
陈鑫 男,博士研究生。主要研究方向:高超声速气动热弹性分析、高超声速气动热弹性建模及优化设计。Tel:010-68913290 E-mail:blingkx@hotmail.com;刘莉 女,博士,教授,博士生导师。主要研究方向:飞行器总体设计、飞行器结构分析与设计、飞行动力学与控制。Tel:010-68914534 E-mail:liuli@bit.edu.cn;岳振江 男,博士研究生。主要研究方向:飞行器总体设计、高超声速气动-热-结构分析及优化。Tel:010-68913290 E-mail:yuezj910420@gmail.com

收稿日期: 2014-03-12

  修回日期: 2014-04-24

  网络出版日期: 2014-05-15

基金资助

国家自然科学基金(11372036)

Reduced order aerothermodynamic modeling research for hypersonic vehicles based on proper orthogonal decomposition and surrogate method

  • CHEN Xin ,
  • LIU Li ,
  • YUE Zhenjiang
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China

Received date: 2014-03-12

  Revised date: 2014-04-24

  Online published: 2014-05-15

Supported by

National Natural Science Foundation of China (11372036)

摘要

气动热弹性分析是高超声速飞行器设计的关键技术之一。高超声速飞行器气动热的准确快速预测是气动热弹性分析的重要前提。针对当前气动加热工程计算、数值计算和实验研究均不能很好满足设计要求的问题,采用本征正交分解(POD)与代理模型(Surrogate)技术结合的模型降阶(POD-Surrogate)方法,建立了一种快速高效的高超声速气动热降阶模型框架。针对典型高超声速三维翼面气动热预测研究结果表明:当保留的POD基模态个数大于20时,POD-Kriging方法和POD-RBF(Radial Basis Function)方法的降阶模型得到的翼面温度分布与计算流体力学(CFD)计算温度L平均误差分别达到6%和14%,相对均方根误差(NRMSE)平均误差分别达到4%和12%,继续增加POD的基模态并不能提高降阶模型的预测精度;针对高超声速机翼气动热计算,POD-Kriging方法比POD-RBF方法具有更高的精度;针对典型的高超声速三维翼面气动热预测表明:基于POD-Surrogate方法的气动热降阶模型具有较高的精度和效率。

本文引用格式

陈鑫 , 刘莉 , 岳振江 . 基于本征正交分解和代理模型的高超声速气动热模型降阶研究[J]. 航空学报, 2015 , 36(2) : 462 -472 . DOI: 10.7527/S1000-6893.2014.0079

Abstract

Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient estimation of aerodynamic heating is the basis of the aerothermoelasticity. Aimed at solving the shortcomings of engineering calculation and computational fluid dynamics, a novel estimation method based on proper orthogonal decomposition (POD) and surrogate(POD-Surrogate) method is proposed. Furthermore, a reduced order modeling framework for aerothermodynamic is developed. Test results for the three-dimensional aerothermodynamic over a hypersonic control surface indicate that the average L errors for POD-Kriging method and POD-RBF (Radial Basis Function) method can reach 6% and 14%, and the average normalized root mean square error (NRMSE) errors can reach 4% and 12%. Using more POD basis modes would not obviously improve the estimation precision when the basis modes reach 20. Reduced order models for the three-dimensional aerothermodynamics over a hypersonic control surface indicate that the precision of POD-Kriging method is better than that of POD-RBF method. In a word, the reduced order modeling for three-dimensional aerothermodynamics has good precision and efficiency.

参考文献

[1] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinca, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川.高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.

[2] Mcnamara J J, Friedmann P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122.

[3] Chen X, Liu L, Li Y L, et al. Engineering calculation of aerodynamic heating for airfoils of hypersonic vehicles[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3): 133-137 (in Chinese). 陈鑫, 刘莉, 李昱霖, 等.高超声速飞行器翼面气动加热的工程计算方法[J]. 弹箭与制导学报, 2013, 33(3): 133-137.

[4] Che J, Tang S, He K F. Engineering calculation of aerodynamic heating for quasi-waverider vehicle[J]. Journal of Ballistics, 2006, 18(4): 58-65 (in Chinese). 车竞, 唐硕, 何开锋.类乘波体飞行器气动加热的工程计算方法[J]. 弹道学报, 2006, 18(4): 58-65.

[5] Kang H L, Yan C, Li T H, et al. Numerical study of aeroheating predictions for hypersonic reentry bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 125-130 (in Chinese). 康宏琳, 阎超, 李亭鹤, 等.高超声速再入钝头体表面热流计算[J]. 北京航空航天大学学报, 2006, 32(12): 125-130.

[6] Mcnamara J J, Crowell A R, Friedmann P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelastic[J]. Journal of Aircraft, 2010, 47(6): 1932-1945.

[7] Pan S, Feng D H, Ding G H, et al. Grid dependency and convergence of hypersonic arothermal simulation[J]. Acta Aeronautica et Astronautica Sinca, 2010, 31(3): 493-499(in Chinese). 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.

[8] Mcnamara J J, Friedmann P P, Powell K, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow[J]. AIAA Journal, 2008, 46(10): 2591-2610.

[9] Wang W X, Guo R W. Study of flow characteristicsof hypersonic inlet based on boundary layer transition[J]. Acta Aeronautica et Astronautica Sinca, 2012, 33(10): 1772-1780 (in Chinese). 王卫星, 郭荣伟. 基于边界层转捩的高超声速进气道特性研究[J]. 航空学报, 2012, 33(10): 1772-1780.

[10] Estruch-Samper D, Bu X Q. Experimental investigation on hypersonic interface heating around surface protuberance[J]. Acta Aeronautica et Astronautica Sinca, 2012, 33(9): 1578-1586 (in Chinese). Estruch-Samper D, 卜雪琴. 高超声速下表面凸起干扰气动热实验研究[J]. 航空学报, 2012, 33(9): 1578-1586.

[11] Tang G M, Li J M, Li Z F. Experimental investigation on hypersonic heat transfer characteristic of 2D separated flow in turbulance[J]. Acta Aerodynamica Sinca, 1981(1): 88-95 (in Chinese). 唐贵明, 李静美, 李仲发.高超声速二维湍流分离流传热特性的实验研究[J]. 空气动力学学报, 1981(1): 88-95.

[12] Carlson H A, Roveda R. Models for controlling airfoil lift and drag, AIAA-2004-0579[R]. Reston: AIAA, 2004.

[13] Thomas J P, Dowell E H, Hall K C. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition based reduced order modals, AIAA-2001-1526[R]. Reston: AIAA, 2001.

[14] Yang C, Liu X Y, Wu Z G. Unsteady aerodynamic modeling based on Pod-observer method[J]. Science China Technological Sciences, 2010, 53(8): 2032-2037.

[15] Jiang Y L. Model order reduction methods[M]. Beijing: Sicience Press, 2010: 200-210 (in Chinese). 蒋耀林. 模型降阶方法[M]. 北京: 科学出版社, 2010:200-210.

[16] Hall K C, Thomas J P, Dowell E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal, 2000, 38(10): 1853-1862.

[17] Yu J Q, Wen Z H, Mei Y S, et al. Typical missile design[M]. Beijing: Beihang University Press, 2010: 242-249 (in Chinese). 于剑桥, 文仲辉, 梅跃松, 等. 战术导弹总体设计[M]. 北京: 北京航空航天大学出版社, 2010: 242-249.

[18] Simpson T W, Booker A J, Ghosh D, et al. Approximation methods in multidisciplinary analysis and optimization: a panel discussion[J]. Structural and Multidisplinary Optimization, 2004, 27(5): 303-313.

[19] Mcnamara J J. Aeroelastic and aerothermoelastic behavior of two and three dimensional lifting surfaces in hypersonic flow[D].Ann Arbor: University of Michigan, 2005.

[20] Dong S J, Ju S C, Qi F, et al. Model and grid dependency accuracy by CFD-Fastran software[J]. Aeronautical Computing Technique, 2011, 41(2):40-42 (in Chinese). 董素君, 居世超, 齐玢, 等. CFD-Fastran气动热计算模型及网格效应分析[J]. 航空计算技术, 2011, 41(2): 40-42.

[21] Yan C, Yu J J, Li J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinca, 2006, 24(1): 125-130 (in Chinese). 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J].空气动力学学报,2006,24(1):125-130.

[22] Qin W J, Hu C G, Guo L P, et al. Effect of near-wall grid size on turbulent flow solutions[J]. Transactions of Beijing Institude of Technology, 2006, 26(5): 388-392 (in Chinese). 覃文洁, 胡春光, 郭良平, 等. 近壁面网格尺寸对湍流计算的影响[J]. 北京理工大学学报, 2006, 26(5): 388-392.

[23] Culler A J, McNamara J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(5): 1721-1738.

[24] Culler A J, McNamara J J. Coupled flow-thermal-structural analysis for response prediction of hypersonic vehicle skin panels, AIAA-2010-2965[R]. Reston: AIAA, 2010.

文章导航

/