基于空域滤波的二维全极化散射中心快速提取
收稿日期: 2013-12-09
修回日期: 2014-04-24
网络出版日期: 2014-05-12
基金资助
国家自然科学基金(61371170);江苏高校优势学科建设工程
Fast Extraction of 2D Full Polarization Scattering Centers Based on Spatial Filtering
Received date: 2013-12-09
Revised date: 2014-04-24
Online published: 2014-05-12
Supported by
National Natural Science Foundation of China (61371170); Priority Academic Program Development of Jiangsu Higher Education Institutions
在全极化逆合成孔径雷达(ISAR)体制下,二维相干极化几何绕射(CP-GTD)模型能够精确描述雷达目标高频电磁极化散射特性。针对CP-GTD模型,提出了一种基于空域滤波的二维全极化散射中心参数快速提取方法。该方法利用空域滤波将二维全极化散射中心参数提取问题分解为多个一维全极化散射中心提取问题,进而利用一维旋转不变技术(1D-ESPRIT)分步对全极化散射中心各维参数进行联合估计,最后利用最小二乘方法获得相干极化散射矩阵的估计。此外,采用这样的分步估计过程,可以实现二维参数的自动配对。复杂度分析和仿真实验表明:该方法不仅能够显著降低运算量,并且还能获得较好的估计精度,可以有效地用于目标全极化散射中心提取。
张肖 , 周建江 , 汪飞 . 基于空域滤波的二维全极化散射中心快速提取[J]. 航空学报, 2014 , 35(9) : 2530 -2539 . DOI: 10.7527/S1000-6893.2014.0071
Under the full polarization inverse synthetic aperture rador (ISAR) imaging radar system, the high-frequency electromagnetic scattering of the radar target can be described accurately by a two-dimensional model derived from the coherent polarization and geometrical theory of diffraction (CP-GTD). For the two-dimensional CP-GTD model, a fast method based on spatial filtering is proposed to extract parameters of two-dimensional full polarization scattering centers. The proposed method utilizes spatial filtering process to decompose two-dimensional full polarization scattering centers extraction into several times of one-dimensional scattering centers extraction, and then the one-dimensional rotational invariance technique(1D-ESPRIT) is employed to jointly estimate each dimensional parameter of full polarization scattering centers step by step. Finally, polarimetric scattering matrices are estimated via the least square method. Furthermore, with such a step-by-step estimating process, two-dimensional parameters can be automatically paired. Complexity analysis and simulation results show that the proposed method not only greatly reduces the computational burden, but also keeps high accuracy of parameter estimation, and it is proved to be effective in full polarization scattering center extraction of target.
[1] Huang P K, Yin H C, Xu X J. Radar target characteristic[M]. Bejing: Publishing House of Electronics Industry, 2005: 229-278. (in Chinese) 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 229-278.
[2] Zhou J X, Shi Z G, Cheng X, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(10): 3713-3729.
[3] Jon G, Cui J J, Mike B. HRR automatic target recognition from superresolution scattering center features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 54(4): 1512-1524.
[4] Tang T, Su Y. Object recognition in SAR imagery using sequential feature matching of scattering centers[J]. Systems Engineering and Electronics, 2012, 34(6): 1131-1135. (in Chinese) 唐涛, 粟毅. 散射中心特征序贯匹配的SAR图像目标识别方法[J]. 系统工程与电子技术, 2012, 34(6): 1131-1135.
[5] Jouny I. Scattering features for target recognition using finite rate of innovation model[C]//IEEE International Symposium on Antennas and Propagation (APSURSI2012), 2012: 1-2
[6] Dai D H. Study on polarimetric radar imaging and target feature extraction[D]. Changsha: National University of Defense Technology, 2008.(in Chinese) 代大海. 极化雷达成像及目标特征提取研究[D]. 长沙: 国防科学技术大学, 2008.
[7] Zeng Y H. Studies on time-frequency analysis and target recognition with polarimetric radar[D]. Changsha: National University of Defense Technology, 2006.(in Chinese) 曾勇虎. 极化雷达时频分析与目标识别的研究[D]. 长沙: 国防科学技术大学, 2006.
[8] Andre Q, Emanuel R, Totir F C, et al. Some radar imagery results using superresolution techniques[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(5): 1230-1244.
[9] Wang J, Zhou J J, Wang F. 2D scattering centers extraction of objects based on GTD model[J]. Journal of Electronics & Information Technology, 2009, 31(4): 958-962. (in Chinese) 王菁, 周建江, 汪飞. 基于GTD模型的目标二维散射中心提取[J]. 电子与信息学报, 2009, 31(4): 958-962
[10] Ye F, He F, Zhu J B, et al. Multi-radar signal two-dimensional fusion processing based on sparse representation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 515-521. (in Chinese) 叶矾, 何峰, 朱炬波, 等. 基于稀疏表示的多雷达信号二维融合处理[J]. 航空学报, 2011, 32(3): 515-521.
[11] Xing S Q, Dai D H, Wang X S, et al. Two-dimensional ESPRIT super-resolution feature extraction using fully polarized measurements and its performance analysis[J]. Acta Electronica Sinica, 2009, 37(12): 2681-2687. (in Chinese) 邢世其, 代大海, 王雪松, 等. 二维全极化ESPRIT超分辨特征提取及性能分析[J]. 电子学报, 2009, 37(12): 2681-2687.
[12] Wang J, Zhou J J, Liao Q X. Extraction of 2D scattering centers of radar targets based on full polarization GTD model[J]. Systems Engineering and Electronics, 2011, 33(12): 2643-2648. (in Chinese) 王菁, 周建江, 廖启新. 基于全极化GTD模型的雷达目标二维散射中心提取[J]. 系统工程与电子技术, 2011, 33(12): 2643-2648.
[13] Richard R, Thomas K. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transaction on ASSP, 1989, 37(7): 984-995.
[14] Lin J D, Fang W H, Wu K H. FSF subspace-based algorithm for joint DOA-FOA estimation[C]//IEEE International Conference on Acoustics, Speech and Siganl Processing(ICASSP2004), 2004, 2: ii-157-160.
[15] Lin J D, Fang W H, Wang Y Y, et al. FSF-MUSIC for joint DOA and frequency estimation[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4529-4542.
[16] Lin C H, Fang W H, Lin J D, et al. A fast algorithm for joint two-dimensional direction of arrival and frequency estimation via hierarchical space-time decomposition[J]. Signal Processing, 2010, 90(1): 207-216.
[17] Li M H, Lu Y L. Dimension reduction for array processing with robust interference cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 103-112.
/
〈 | 〉 |