电子与控制

基于MCMC-Gibbs采样的天波超视距雷达联合状态估计与模式辨识

  • 冯肖雪 ,
  • 梁彦 ,
  • 焦连猛
展开
  • 西北工业大学 自动化学院, 陕西 西安 710072
冯肖雪女,博士研究生。主要研究方向:估计理论,信息融合,目标跟踪与识别。Tel:029-88431306,E-mail:fwjiangyan@163.com;梁彦男,博士,教授,博士生导师。主要研究方向:估计理论,信息融合,目标跟踪与识别。Tel:029-88431308,E-mail:liangyan@nwpu.edu.cn

收稿日期: 2013-11-28

  修回日期: 2014-04-25

  网络出版日期: 2014-05-05

基金资助

国家自然科学基金(61135001,61074179,61374023,61374159);西北工业大学博士论文创新基金(CX201320)

Joint State Estimation and Mode Identification based on MCMC-Gibbs Sampling for OTHR

  • FENG Xiaoxue ,
  • LIANG Yan ,
  • JIAO Lianmeng
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-11-28

  Revised date: 2014-04-25

  Online published: 2014-05-05

Supported by

National Natural Science Foundation of China (61135001, 61074179, 61374023, 61374159); Doctorate Foundation of the Northwestern Polytechnical University (CX201320)

摘要

天波超视距雷达(OTHR)目标跟踪面临着“三低”(低检测概率、低数据率、低测量精度)和“多路径”(多条传播路径)的严峻挑战,准确的传播模式辨识与精确的目标状态估计是改善跟踪能力的关键。针对上述问题,提出了一种基于马尔科夫蒙特卡洛吉布斯(MCMC-Gibbs)采样的OTHR联合状态估计与模式辨识算法,该算法通过MCMC-Gibbs采样求取当次迭代当前拍最优的关联矩阵,进而利用同时多量测滤波进行状态和协方差更新,最后引入联合估计与辨识风险函数寻求最优的模式辨识与状态估计结果。不同仿真参数下仿真结果表明该算法的有效性,同时该算法在径向距和方位角估计精度上均高于多路径概率数据关联算法(MPDA),但这是以计算量为代价的。

本文引用格式

冯肖雪 , 梁彦 , 焦连猛 . 基于MCMC-Gibbs采样的天波超视距雷达联合状态估计与模式辨识[J]. 航空学报, 2014 , 35(8) : 2299 -2306 . DOI: 10.7527/S1000-6893.2014.0076

Abstract

Target tracking of over the horizon radar (OTHR) faces the challenge of the low detection probability, low sampling rate, low measurement accuracy and the multipath propagation. Both mode recognition of multipath propagation and state estimation significantly affect the tracking performance. In this paper, the method of joint state estimation and mode identification based on Markov Chain Monte Carlo-Gibbs (MCMC-Gibbs) sampling for OTHR target tracking is proposed. Validation gates are firstly constructed for every mode to generate only those hypotheses that satisfy the validation gate requirement to eliminate the number of hypotheses significantly. Then the association events are obtained through MCMC-Gibbs sampling to further calculate the decision cost. Next, multiple simultaneous measurement filters are proposed to update the conditional state estimation and covariance for estimation cost. Finally, Bayes risk for joint decision and estimation is introduced to find the optimal solution. Simulation results show the effectiveness of the proposed method compared with the multipath data association tracker (MPDA) method at some sacrifice to computation cost.

参考文献

[1] Zhou W Y, Jiao P N. Over the horizon radar[M]. Beijing: Publishing House of Electronics Industry, 2008: 1-9. (in Chinese) 周文瑜, 焦培南. 超视距雷达技术[M]. 北京:电子工业出版社, 2008: 1-9.

[2] Pulford G W, Scala B L. Over the horizon radar tracking using the viterbi algorithm-second report to high frequency radar division, Report No.16/95. Melbourne:University of Melbourne, 1995.

[3] Pulford G W, Scala B L. Over the horizon radar tracking using the viterbi algorithm-third report to high frequency radar division, Report No. 27/95. Melbourne:University of Melbourne, 1995.

[4] Colegrove S B, Davey S J, Cheung B. PDAF versus PMHT performance on OTHR data//Proceedings of the International Radar Conference, 2003: 560-565.

[5] Colegrove S B, Davey S J. PDAF with multiple clutter regions and target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 110-124.

[6] Davey S J, Gray D A. A comparison of track initiation methods with the PMHT//IEEE Proceedings on Information, Decision and Control, 2002: 323-328.

[7] Pulford G W, Evans R J. A multipath data association tracker for over-the-horizon radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1165-1182.

[8] Pulford G W. Over the horizon radar multipath tracking with uncertain coordinate registration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 38-56.

[9] Liu H X, Pan Q, Liang Y, et al. Comments on "A multipath data association tracker for over the horizon radar"[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1147-1150.

[10] Liu H X. Research on key techniques of data processing for sky-wave OTHR. Xi'an: Northwestern Polytechnical University, 2007. (in Chinese) 刘慧霞. 天波超视距雷达数据处理若干关键技术研究. 西安: 西北工业大学, 2007.

[11] Liu H X, Liang Y, Pan Q, et al. A multipath data association for OTHR//International Conference on Radar, 2006: 1-4.

[12] Pulford G W, Scala B L. MAP estimation of target manoeuvre sequence with the expectation-maximization alorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 367-377.

[13] Feng X X, Liang Y, Jiao L M, et al. Mode identification and positioning accuracy improvement using forward-based receivers for OTHR[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2590-2598. (in Chinese) 冯肖雪, 梁彦, 焦连猛, 等.基于前置接收机的天波超视距雷达回波模式辨识与定位精度提升[J].航空学报, 2013, 34(11): 2590-2598.

[14] Doucet A, Logothetis A, Krishnamurthy V. Stochastic sampling algorithms for state space estimation of jump Markov linear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(1): 188-202.

[15] Sathyan T, Sinha A, Kirubarajan T, et al. MDA-based data association with prior track information for passive multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 539-556.

[16] Bergman N, Doucet A. MCMC data association for target tracking//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000, 2: II705-II708.

[17] Cowles M K, Carlin B P. Markov chain monte carlo convergence diagnostics: a comparative review[J]. Journal of the American Statistical Association, 1996, 91(434): 883-904.

[18] Gilks W R, Richardson S, Spiegelhalter D J. Markov chain Monte Carlo in practice[M]. New York: Springer US, 1996: 1-19.

[19] Li X R, Yang M, Ru J. Joint tracking and classification based on bayes joint decision and estimation//Proceedings of International Conference on Information Fusion, 2007: 1421-1428.

[20] Li X R. Optimal Bayes joint decision and estimation//Proceedings of International Conference on Information Fusion, 2007: 1316-1323.

文章导航

/