基于改进CST参数化方法和转捩模型的翼型优化设计
收稿日期: 2014-03-04
修回日期: 2014-04-14
网络出版日期: 2014-05-01
Airfoil optimization based on improved CST parametric method and transition model
Received date: 2014-03-04
Revised date: 2014-04-14
Online published: 2014-05-01
为提高翼型优化设计效率,增大设计空间,采用B样条基函数替代传统的形状类别函数(CST)方法中的Bezier多项式,增强了对翼型参数化表达的局部控制能力并提高了翼型局部表达精度。为了确保翼型在优化设计过程中的几何光顺特性和代理模型的准确性,采用小波分解技术提出了多分辨率翼型的局部光顺方法。采用基于本征正交分解(POD)的流场数值代理模型,并结合γ-Reθt转捩模型实现了快速准确的气动力与流动转捩预测。采用小波技术光顺的CST翼型参数化建模、POD流场数值计算代理模型以及γ-Reθt转捩模型,结合遗传算法建立了完整的翼型气动优化设计系统。针对低速层流翼型与超临界翼型进行优化设计,优化设计后的翼型升阻比分别提高了47.42%和45.85%,且对改进前后参数化建模方法的优化性能进行了对比,结果表明本文构建的翼型气动优化设计系统具备很高的优化效率。
王迅 , 蔡晋生 , 屈崑 , 刘传振 . 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015 , 36(2) : 449 -461 . DOI: 10.7527/S1000-6893.2014.0059
In this paper, B-spline basis function is implemented in class and shape transformation (CST) parameterization method in place of the traditional Bezier polynomials to enhance the local ability of control and accuracy to represent an airfoil shape. To guarantee the requirements on geometric smoothing performance and proper orthogonal decomposition (POD) reconstruction accuracy in airfoil design optimization process, the local fairing method for multi-resolution airfoil is proposed based on the wavelet decomposition technique, expanding the design space. A surrogate model based on POD method and γ-Reθt transition predicting model is adopted to achieve fast and accurate prediction of aerodynamic forces and transition. The computed results of flow around airfoils show that the combined surrogate model is an effective method in design optimization of natural laminar airfoil. A complete aerodynamic design optimization system for natural laminar airfoil is constructed by integrating genetic algorithm, the improved CST parameterization method with wavelet decomposition fairing, POD surrogate model and γ-Reθt transition model. The system is used for the design optimization of low-speed and transonic airfoils, achieving an increase in lift-drag ratio of 47.42% and 45.85%, respectively, which validates the efficiency of the design optimization system proposed in this paper.
[1] Mousavi A, Castonguay P, Nadarajah S. Survey of shape parameterization techniques and its effect on three-dimensional aerodynamic shape optimization[C]//AIAA 37th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2007.
[2] Kulfan B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
[3] Ciampa P D, Zill T, Nagel B, et al. CST parametrization for unconventional aircraft design optimization[C]//27th Congress of the International Council of the Aeronautical Sciences (ICAS).Nice:[s. n.], 2010.
[4] Liu C Z, Duan Y H, Cai J S. Aerodynamic shape optimization based on multi block class and shape transformation[J]. Journal of Astronautics, 2014, 35(2): 137-143 (in Chinese). 刘传振, 段焰辉, 蔡晋生. 气动外形优化中的分块类别形状函数法研究[J]. 宇航学报, 2014, 35(2): 137-143.
[5] Fang B R. Airplane aerodynamic design[M]. Beijing: Aviation Industry Press, 1997: 213-215 (in Chinese). 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997: 213-215.
[6] Zhu Z Q, Wu Z C, Ding J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 968-971 (in Chinese). 朱自强,吴宗成,丁举春. 层流流动控制技术及应用[J].航空学报, 2011, 32(5): 968-971.
[7] Deng L, Qiao Z D, Xiong J T, et al. Multi-objective inverse design of natural laminar flow airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(17): 1373-1378 (in Chinese). 邓磊, 乔志德, 熊俊涛, 等. 多目标自然层流翼型反设计方法[J]. 航空学报, 2010, 31(17): 1373-1378.
[8] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design based on delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826 (in Chinese). 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[9] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[10] Duan Y H, Cai J S, Liu Q H. Surrogate model based optimization for airfoil design[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(4): 617-627 (in Chinese). 段焰辉, 蔡晋生, 刘秋洪. 基于代理模型方法的翼型优化设计[J]. 航空学报, 2011, 32(4): 617-627.
[11] Les P, Wayne T. The NURBS book[M]. Berlin: Springer, 1997: 60-66.
[12] Mu G W, Zang T, Zhao G. Wavelet-based local fairing algorithm for B-spline curves[J]. Journal of Engineering Graphics, 2006, 27(2): 84-89 (in Chinese). 穆国旺, 臧婷, 赵罡. 基于小波的B样条曲线局部光顺算法[J]. 工程图学学报, 2006, 27(2): 84-89.
[13] Finkelstein A, Salesin D H. Multiresolution curves[C]//Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. New York:[s.n.], 1994: 261-268.
[14] Wada Y, Liou M S.A flux splitting scheme with high-resolution and robustness for discontinuities[J]. Special Publication of National Aerospace Laboratory, 1994, 1(1): 117-122.
[15] Chen R F, Wang Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238-2245.
[16] Somers D M. Design and experimental results for a natural-laminar-flow airfoil for general aviation applications, NASA TP-1861[R]. Washington, D. C.: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1981.
/
〈 | 〉 |