考虑螺旋桨滑流影响的机翼气动优化设计
收稿日期: 2013-12-09
修回日期: 2014-04-08
网络出版日期: 2014-05-01
基金资助
工信部重大专项(MODERN ARK700型涡桨支线飞机)
Aerodynamic Optimization Design of Wing Under the Interaction of Propeller Slipstream
Received date: 2013-12-09
Revised date: 2014-04-08
Online published: 2014-05-01
Supported by
MIIT Special Item (MODERN ARK700 Turboprop Regional Aircraft)
涡桨飞机的机翼、短舱等部件在滑流作用下周围的流场特性与无滑流状态下截然不同.所以,应该在涡桨飞机的机翼气动设计过程中考虑螺旋桨滑流的影响,从而使得机翼在真实飞行时滑流作用下表现出更好的气动特性.采用基于雷诺平均Navier-Stokes方程的多重参考坐标系(MRF)方法对螺旋桨滑流进行高精度准定常数值模拟,通过自由变形(FFD)技术实现螺旋桨飞机机翼的参数化构建,应用径向基函数(RBF)插值的动网格技术进行网格自动生成,获得样本机翼在滑流影响下的气动数据后,建立目标函数和状态函数的Kriging代理模型,结合随机权重粒子群优化(PSO)算法、Kriging代理模型和对应的EI(Expected Improvement)函数加点准则进行加样本点以及代理模型重建,从而建立滑流影响下机翼气动优化设计系统.使用该系统对某型螺旋桨飞机进行了滑流影响下的优化设计,结果表明,优化后的构型机翼和短舱在巡航状态下减阻达3.98 counts,升阻比提高了3.325%.因此,建立的考虑滑流影响下的机翼优化设计方法是可行的.
徐家宽 , 白俊强 , 黄江涛 , 乔磊 , 董建鸿 , 雷武涛 . 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014 , 35(11) : 2910 -2920 . DOI: 10.7527/S1000-6893.2014.0044
The propeller slipstream effects usually create large difference to the flow field around wings, nacelles and other parts of turboprop aircraft compared with no slipstream effect. Thus, the slipstream effects should be taken into account in aerodynamic design of wings, leading to better aerodynamic characteristics under real flying condition which includes slipstream effects. Propeller slipstream is simulated using multiple reference frames (MRF) quasi-steady method based on Reynolds-averaged Navier-Stokes equations. Free form deformation (FFD) technology is used for parameterization of wings. A grid deformation method based on radial basis functions (RBF) interpolation is embedded in optimization for rapid grid regeneration. After the aerodynamic data of wing samples is obtained, a Kriging surrogate model is trained with these original samples and iteratively improved with EI (Expected Improvement) through optimization. Combining random weighted particle swarm optimization (PSO) algorithm with aforementioned methods, the optimization system is established. The optimization design result of a certain turboprop aircraft using this optimization system indicates that the wing and nacelle of the optimized configuration have a drag reduction of 3.98 counts and lift-drag ratio increase by 3.325% in cruising state. Therefore, the numerical method and the optimization system used are practical and valuable for wing design under slipstream effects.
[1] Liu P Q. The theory and application of air propeller[M]. Beijing: Beihang University Press, 2006: 55-82. (in Chinese) 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 55-82.
[2] Li B, Liang D W, Huang G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 846-852.(in Chinese) 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4): 846-852.
[3] Duan Y Q, Shi A M. A new and effective actuator disk model approach for the simulation of propeller slipstream [J]. Journal of Northwestern Polytechnical University, 2012, 30(6): 842-846.(in Chinese) 段义乾, 史爱明. 一种新型的螺旋桨滑流激励盘模型的研究方法[J]. 西北工业大学学报, 2012, 30(6): 842-846.
[4] Wetmoreland W S, Tramel R W, Barber J. Modeling propeller flow-fields using CFD, AIAA-2008-0402[R]. Reston: AIAA, 2008.
[5] Bryan F, Ramesh A. CFD analysis of open rotor engines using an actuator disk model, AIAA-2014-0408[R].Reston: AIAA, 2014.
[6] Xia Z F, Yang Y. Unsteady numerical simulation interaction effects of propeller and wing [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1195-1201.(in Chinese) 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7): 1195-1201.
[7] Stuermer A W. Unsteady CFD simulations of propeller installation effects Sacramento California, AIAA-2006-4969[R]. Reston: AIAA, 2006.
[8] Yang A M, Liu J H, Weng P F. Navier-Stokes computation about a helicopter rotor in hover using chimera grids and multi-grid acceleration [J]. Acta Aerodynamica Sinica, 2009, 27(1): 6-10. (in Chinese) 杨爱明, 刘金花, 翁培奋. 基于重叠网格技术和多重网格算法的悬停旋翼粘性绕流数值模拟[J]. 空气动力学学报, 2009, 27(1): 6-10.
[9] Wen Q, Liang D W, Huang G P. Construction of MUSCL scheme in moving reference frame [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 59-62.(in Chinese) 温泉, 梁德旺, 黄国平. 旋转坐标系下三维MUSCL 格式的构成[J]. 南京航空航天大学学报, 2003, 35(1): 59-62.
[10] Müller L, Ko?ulovi'c D, Hepperle M. Installation effects of a propeller over a wing with internally blown flap, AIAA-2012-3335[R]. Reston: AIAA, 2012.
[11] Nils B, Rolf R, Carsten L, et al. Aerodynamic effects of propeller slipstream on a wing with circulation control by internally blown flaps, AIAA-2014-0407[R]. Reston: AIAA, 2014.
[12] Zhu X X. The molding technology of free curve and surface[M]. Beijing: Science Press, 2000: 66-112. (in Chinese) 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 66-112.
[13] Huang J T, Gao Z H, Bai J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 37-45.(in Chinese) 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼梢小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1): 37-45.
[14] Yan C. Computational fluid dynamics and its application[M]. Beijing: Beihang University Press, 2006: 17-243. (in Chinese) 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006: 17-243.
[15] Boer A D, Schoot V D, Bijl H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures 2007, 85(11-14): 784-795.
[16] Allen C B, Rendall T C S. Unified approach to CFD/CSD interpolation and mesh motion using radial basis functions, AIAA-2007-3804[R]. Reston: AIAA, 2007.
[17] Bai J Q, Liu N, Qiu Y S, et al. Optimization of multi-foil basing on RBF moving grid method and modified particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2701-2715.(in Chinese) 白俊强, 刘南, 邱亚松, 等. 基于RBF动网格方法和改进粒子群优化算法的多段翼型优化[J]. 航空学报, 2013, 34(12): 2701-2715.
[18] Noel C. The origins of Kriging[J]. Journal of Mathematical Geology, 1990, 22(3): 239-252.
[19] Donald R J, Matthias S, William J W. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492.
[20] Donald R J. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383.
[21] Martin J D. Robust kriging models, AIAA-2010-2854[R]. Reston: AIAA, 2010.
[22] Yang H, Song W P, Han Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226.(in Chinese) 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218 -1226.
[23] Wang W B. The study and application of particle swarm optimization algorithm[D]. Chengdu: Southwest Jiaotong University, 2005.(in Chinese) 王维博. 粒子群优化算法研究及其应用[D]. 成都: 西南交通大学, 2005.
[24] Ji Z, Liao H L, Wu Q H. The algorithm and application of particle swarm[M]. Beijing: Science Press, 2008: 16-71. (in Chinese) 纪震, 廖惠连, 吴青华. 粒子群算法及应用[M]. 北京: 科学出版社, 2008: 16-71.
[25] Moens F, Gardarein P. Numerical simulation of the propeller/wing interaction for transport aircraft, AIAA-2001-2404[R]. Reston: AIAA, 2001.
/
〈 | 〉 |