流体力学与飞行力学

等离子体气动激励控制超声速边界层分离的实验研究

  • 孙权 ,
  • 崔巍 ,
  • 程邦勤 ,
  • 金迪 ,
  • 李军
展开
  • 1. 空军工程大学 等离子体动力学重点实验室, 西安 710038;
    2. 清华大学 航天航空学院, 北京 100084
孙权 男,博士研究生。主要研究方向:超声速等离子体流控制技术。Tel:029-84787527 Email:steve5761@126.com;崔巍 男,硕士,讲师。主要研究方向:超声速等离子体流控制与点火助燃技术。Tel:029-84787527 Email:Cuiweis@gmail.com

收稿日期: 2014-03-18

  修回日期: 2014-04-16

  网络出版日期: 2014-04-21

基金资助

国家自然科学基金(51336011,51276197,51207169)

Experimental investigation on supersonic boundary layer separation control by plasma aerodynamic actuation

  • SUN Quan ,
  • CUI Wei ,
  • CHENG Bangqin ,
  • JIN Di ,
  • LI Jun
Expand
  • 1. Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
    2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2014-03-18

  Revised date: 2014-04-16

  Online published: 2014-04-21

Supported by

National Natural Science Foundation of China (51336011, 51276197, 51207169)

摘要

等离子体气动激励与超声速气流相互作用已成为高速流动控制领域的研究热点。激波与边界层相互作用现象广泛存在于超声速飞行器之中。本文进行了等离子体气动激励控制压缩角区和激波诱导边界层分离的实验,通过流场纹影显示和壁面静压测量,研究等离子体气动激励如何影响激波、激波如何影响边界层特性的科学问题。实验结果表明:施加毫秒量级表面电弧放电能够前移压缩角区的诱导斜激波,使分离区后移,分离区域增加,但激波强度减弱,流场总压增加;施加微秒量级表面电弧放电能够抑制激波诱导边界层分离,使分离区减小,流场总压减小。基于实验结果,认为毫秒量级表面电弧放电激励控制超声速气流的主要机理为放电过程的焦耳热效应;微秒量级表面电弧放电激励控制超声速气流的主要机理为焦耳热效应和冲击波效应共同作用。

本文引用格式

孙权 , 崔巍 , 程邦勤 , 金迪 , 李军 . 等离子体气动激励控制超声速边界层分离的实验研究[J]. 航空学报, 2015 , 36(2) : 501 -509 . DOI: 10.7527/S1000-6893.2014.0062

Abstract

Plasma aerodynamic actuation and supersonic flow interaction has become the focus of researches. There is a wide range of universal phenomenon of shock wave and boundary layer interaction in supersonic aircraft. Experimental investigation on boundary layer separation induced by ramp and impinging shock wave are performing in supersonic flow by plasma aerodynamic actuation. Through schlieren imaging and wall static pressure results, plasma-shock wave interaction and shock-boundary layer interaction mechanism are studied. Experimental results show that the millisecond plasma actuation can make the shock wave induced by the ramp forward and enlarge the separation area. At the same time, the intensity of shock wave induced by the ramp is weakened. The main control mechanism are Joule heating effect. The microsecond plasma actuation can control the boundary layer separation induced by the impinging shock wave and reduce the separation area but the overall pressure reduced. The main control mechanism is Joule heating effect and impact effect based on experimental results.

参考文献

[1] Roth J R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma[J]. Physics of Plasmas, 2003, 10(5): 2117-2126.

[2] Enloe C L, McLaughlin T E, van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology[J]. AIAA Journal, 2004, 42(3): 589-594.

[3] Sasoh A, Kikuchi K, Sakai T. Spatio-temporal filament behaviour in a dielectric barrier discharge plasma actuator[J]. Journal of Physics D: Applied Physics, 2007, 40(14): 4181-4184.

[4] Porter C O, Baughn J W, McLaughlin T E, et al. Plasma actuator force measurements[J]. AIAA Journal, 2007, 45(7): 1562-1570.

[5] Post M L, Corke T C. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135.

[6] Webb N, Clifford C, Samimy M. An investigation of the control mechanism of plasma actuators in a shock wave-boundary layer interaction, AIAA-2013-0402[R]. Reston: AIAA, 2013.

[7] Webb N, Clifford C, Samimy M. Control of oblique shock wave-boundary layer interactions using plasma actuators, AIAA-2012-2810[R]. Reston: AIAA, 2012.

[8] Webb N, Clifford C, Samimy M. Preliminary results on shock wave/boundary layer interaction control using localized arc filament plasma actuators, AIAA-2011-3426[R]. Reston: AIAA, 2011.

[9] Nishihara M, Gaitonde D, Adamovich I V, et al. Effect of nanosecond pulse discharges on oblique shock and shock wave-boundary layer interaction, AIAA-2013-0416[R]. Reston: AIAA, 2013.

[10] Narayanaswamy V, Raja L L, Clemens N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(1): 076101.

[11] Kalra C S, Zaidi S, Miles R B. Shock wave induced turbulent boundary layer separation control with plasma actuators, AIAA-2009-1002[R]. Reston: AIAA, 2009.

[12] Sun Q, Cheng B Q, Li Y H, et al. Experimental inves-tigation on hypersonic flow and plasma aerodynamic actuation interaction[J]. Plasma Science and Technology, 2013, 15(9): 908-915.

[13] Sun Q, Cheng B Q, Li Y H, et al. Computational and experimental analysis of Mach 2 air flow over a blunt body with plasma aerodynamic actuation[J]. Science China Technological Sciences, 2013, 56(2): 795-801.

[14] Wang J, Li Y H, Xing F. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7): 073307.

[15] Su C B, Li Y H, Cheng B Q. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow[J]. Chinese Journal of Aeronautics, 2010, 23(1): 22-32.

[16] Leonov S B. Study of a structural plasma influence on characteristics of viscous friction and separated near-surface zone position under high-speed airflow, ADA 433384[R]. 2005.

文章导航

/