载人航天器空气环境参数控制非定常仿真分析
收稿日期: 2013-12-30
修回日期: 2014-03-26
网络出版日期: 2014-04-18
基金资助
中国载人航天工程专项
Unsteady Simulation Analysis on Air Environment Parameters Control of Manned Spacecraft
Received date: 2013-12-30
Revised date: 2014-03-26
Online published: 2014-04-18
Supported by
China Manned Space Engineering Special Project
为支持乘员在轨驻留,载人航天器需通过空气环境控制系统将众多设计参数和空气环境参数控制在指标范围内.文章建立了一种载人航天器空气环境非定常控制仿真分析模型,包括舱体模块、航天员模块、舱压控制模块、温湿度控制模块以及CO2净化模块.利用该模型分析了载人航天器空气环境参数随乘员代谢水平的非定常变化趋势,并评估了控制系统的工作性能.结果表明:乘员代谢水平变化对空气环境参数有显著影响,通过调节控制系统运行参数可将各空气参数控制在有效指标范围内.人区温度与O2分压、CO2分压和人区湿度有密切的影响关系,不可孤立地进行分析.为载人航天器空气环境参数控制系统的设计和流程改进提供了依据.
靳健 , 侯永青 . 载人航天器空气环境参数控制非定常仿真分析[J]. 航空学报, 2014 , 35(11) : 2970 -2978 . DOI: 10.7527/S1000-6893.2014.0032
In order to support crew reside, key air environment parameters of manned spacecraft should be controlled with index range using air environment control system which involves a number of design and operational parameters. In this paper, an unsteady simulation model of manned spacecraft air environment control is developed, including cabin sub module, crew sub module, pressure control sub module, temperature/humidity control sub module and CO2 removal sub module. Using this unsteady simulation model, air environment parameters varying trend as the crew metabolic level variation has been analyzed and performance of control system has been evaluated. According to the results, crew metabolic level could influence air environment parameters dramatically. Air environment parameters could be maintained within index range through regulating control system operational parameters. Furthermore, air environment parameters could not be analyzed separately due to non-negligible effects of air temperature to O2 partial pressure, CO2 partial pressure and relative humidity. The work in this paper is helpful to promote the process of design and improvement of the air environment control system of manned spacecraft.
[1] Larson W J, Pranke L K. Human spaceflight: mission analysis and design[M]. New York:The McGraw-Hill Companies, 2007: 539-574.
[2] Lin G P, Wang P X. Life support technology of manned spacecraft[M]. Beijing: Beihang University Press, 2006: 37-147. (in Chinese) 林贵平, 王普秀. 载人航天生命保障技术[M]. 北京: 北京航空航天大学出版社, 2006: 37-147.
[3] Qi F R. Technology of manned spacecraft[M]. Beijing: National Defense Industry Press, 1999: 210-288. (in Chinese) 戚发轫. 载人航天器技术[M]. 北京: 国防工业出版社, 1999: 210-288.
[4] Fan J F, Huang Z W. Introduction to manned spaceship engineering[M]. Beijing: National Defense Industry Press, 2000: 122-155. (in Chinese) 范剑峰, 黄祖蔚. 载人飞船工程概论[M].北京: 国防工业出版社, 2000: 122-155.
[5] Massimo A, Giosuè B, Gianluigi G, et al. The design and the verification of the ATV cargo carrier environmental control and life support system and water & gas delivery system, SAE, 2000-01-2299[R]. Detroit: [s.n], 2000.
[6] Anderson G, Martin C E. Evaluation and application of Apollo ECLS/ATCS systems to future manned missions, AIAA-2005-0703[R]. Reston: AIAA, 2005.
[7] Mitchell K L, Bagdigian R M, Carrasquillo R L. Technical assessment of MIR-1 life support hardware for the International Space Station, NASA TM 1994-108441[R]. Washington, D.C.: NASA, 1994.
[8] Wieland P O. Living together in space: the design and operation of the life support systems on the International Space Station, NASA TM 1998-206956[R]. Washington, D.C.: NASA, 1998.
[9] Fu S M, Pei Y F, Qie D F. Review of integrated ECLSS/TCS tests for ISS[J]. Spacecraft Environment Engineering, 2010, 27(4): 447-451. (in Chinese) 付仕明, 裴一飞, 郄殿福. 国际空间站集成ECLSS/TCS试验综述[J]. 航天器环境工程, 2010, 27(4): 447-451.
[10] Cheng W L, Zhao R, Huang J R, et al. Numerical simulation of flow heat transfer and humidity distribution in pressured cabins of an independent flight manned spacecraft[J]. Journal of Astronautics, 2009, 30(6): 2410-2416. (in Chinese) 程文龙, 赵锐, 黄家荣, 等. 载人航天器独立飞行时密封舱内流动换热及热湿分析研究[J]. 宇航学报, 2009, 30(6): 2410-2416.
[11] Fu S M, Xu X P, Li J D, et al. Carbon dioxide accumulation of space station crew quarters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 523-526. (in Chinese) 付仕明, 徐小平, 李劲东, 等. 空间站乘员睡眠区二氧化碳聚集现象[J]. 北京航空航天大学学报, 2007, 33(5): 523-526.
[12] Ji C Y, Liang X G, Ren J X. Numerical study of crew CO2 discharge in pressurized cabin of space station[C]// The Fifth Space Thermal Physics conference. Huangshan: Chinese Astronautical Society, 2000: 147-150. (in Chinese) 姬朝月, 梁新刚, 任建勋. 空间站乘员舱内二氧化碳排放的数值研究[C]//第五届空间热物理会议. 黄山: 中国宇航学会, 2000: 147-150.
[13] Zhong Q, Liu Q. A numerical investigation on heat transfer and flow in a pressurized cabin of spacecraft[J]. Journal of Astronautics, 2002, 23(5): 44-48. (in Chinese) 钟奇, 刘强. 航天器密封舱流动和传热的数值研究[J]. 宇航学报, 2002, 23(5): 44-48.
[14] Pan W, Zhong Q, Ma H T, et al. Numerical simulation of flow and heat transfer process in manned spacecraft cabin[J]. Spacecraft Engineering, 2008, 17(3): 51-56. (in Chinese) 潘维, 钟奇, 麻慧涛, 等. 载人航天器密封舱内流动换热数值模拟研究[J]. 航天器工程, 2008, 17(3): 51-56.
[15] Huang J R, Fan H L. Steady numerical simulation for the humidity distribution in manned spacecraft habitation cabin[J]. Journal of Astronautics, 2005, 26(3): 349-353. (in Chinese) 黄家荣, 范含林. 载人航天器生活舱内湿度场的稳态数值模拟[J]. 宇航学报, 2005, 26(3): 349-353.
[16] Romera J A, Persson J, Witt J. Mode transition analysis of the attached pressurized module cabin air loop with Ecosimpro, SAE, 2000-01-2366[R]. Detroit: [s.n], 2000.
/
〈 | 〉 |