材料工程与机械制造

一种韧性断裂准则中材料常数的计算模型及其应用

  • 郎利辉 ,
  • 杨希英 ,
  • 刘康宁 ,
  • 蔡高参 ,
  • 郭禅
展开
  • 北京航空航天大学 机械工程及自动化学院, 北京 100191
郎利辉 男,博士,教授,博士生导师。主要研究方向:板材热介质成形关键技术、板材及管材充液成形技术、粉末成形工艺及仿真。Tel:010-82316821 E-mail:lang@buaa.edu.cn;杨希英 男,博士研究生。主要研究方向:板材热介质成形断裂失稳及成形极限。E-mail:yxiyingbuaa@163.com

收稿日期: 2014-02-26

  修回日期: 2014-04-14

  网络出版日期: 2014-04-17

基金资助

国家自然科学基金(50975014);中俄国际合作与交流项目NSFC-RFBR基金(51010166)

A calculating model of material constants in ductile fracture criterion and its applications

  • LANG Lihui ,
  • YANG Xiying ,
  • LIU Kangning ,
  • CAI Gaocan ,
  • GUO Chan
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Received date: 2014-02-26

  Revised date: 2014-04-14

  Online published: 2014-04-17

Supported by

National Natural Science Foundation of China (50975014); Funds for International Cooperation and Exchange of the Na-tional Natural Science Foundation of China(Sino-Russia)(51010166)

摘要

为确定符合板材变形规律的韧性断裂准则中的材料常数,基于传统M-K模型框架并进行修正,结合单向拉伸和平面应变试验数据,提出一种新的韧性断裂准则材料常数计算模型。利用MATLAB软件编写该计算模型的算法程序,得到应用于铝镁合金5A06-O板材的不同韧性断裂准则材料常数。同时将C&L韧性断裂准则嵌入Abaqus/Explicit显示模块的用户材料子程序VUMAT。在200℃的条件下,对铝镁合金5A06-O板材在热介质胀形和充液热拉深中的断裂行为进行数值模拟,并与相同工艺参数下的试验所得结果作对比。结果表明,热介质胀形高度误差为6.2%,充液热拉深深度误差为8.5%,验证了韧性断裂准则材料常数计算模型的正确性,表明了C&L韧性断裂准则在板材充液热成形中的适用性。

本文引用格式

郎利辉 , 杨希英 , 刘康宁 , 蔡高参 , 郭禅 . 一种韧性断裂准则中材料常数的计算模型及其应用[J]. 航空学报, 2015 , 36(2) : 672 -679 . DOI: 10.7527/S1000-6893.2014.0054

Abstract

To determine material constants of ductile fracture criteria which are in accord with sheet deforming regularity, based on the theoretical framework of the conventional M-K model and some reasonable modification, a new computational model is derived by combining data of uniaxial tension with that of plane strain tests. Through compiling the algorithm program in MATLAB, material constants of various ductile fracture criteria are determined by using data of aluminium magnesium alloy 5A06-O sheet. The C&L ductile fracture criterion is written into the subroutine VUMAT which is embedded in Abaqus/Explicit. Then, numerical simulations of aluminium magnesium alloy 5A06-O sheet warm hydrobulging and hydroforming are conducted at 200℃. Compared with the experimental results with the same processing parameter, the errors of warm hydrobulging height and warm hydroforming height do not exceed 6.2% and 8.5% respectively. Thus, the results show that the validity of the model is verified and the application of the C&L ductile fracture criterion in sheet warm hydrobulging and hydroforming is effective.

参考文献

[1] Li T, Lang L H, An D Y, et al. Multi sheet hydroforming of complicated thin wall part and numerical simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7): 830-833 (in Chinese). 李涛, 郎利辉, 安东洋, 等. 复杂薄壁零件板多级充液成形及过程数值模拟[J]. 北京航空航天大学学报, 2007, 33(7): 830-833.

[2] Lang L H, Joachim D, Karl B N. Study on hydromechanical deep drawing with uniform pressure onto the blank[J]. International Journal of Machine Tools and Manufacturing, 2004, 44(5): 495-502.

[3] Lang L H, Gu G C, Li T, et al. Numerical and experimental conformation of the calibration stage's effect in multi-operation sheet hydroforming using poorformability materials[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 97-100.

[4] Zhu Y, Wan M, Zhou Y K. Multi-stage hydromechanical deep drawing of complex thin-walled superalloy parts[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 552-560 (in Chinese). 朱宇, 万敏, 周应科. 高温合金复杂薄壁零件多道次充液拉深技术[J]. 航空学报, 2011, 32(3): 552-560.

[5] Wang H T, Gao L, Shen X H, et al. Hydromechanical deep drawing of aluminum alloy 2A12O assisted by augmented radial pressure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1266-1271 (in Chinese). 王会廷, 高霖, 沈晓辉, 等. 双路径自然增压铝合金2A12O充液拉深[J]. 航空学报, 2010, 31(6): 1266-1271.

[6] Swift H W. Plastic instability under plane stress[J]. Journal of the Mechanics and Physics of Solids, 1952, 1(1): 1-18.

[7] Hill R. On discontinuous plastic states with special reference to localized necking in thin sheets[J]. Journal of Mechanics and Physics of Solids, 1952, 1(1): 19-31.

[8] Marciniak Z, Kuczynski K. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Science, 1967, 9(3): 609-620.

[9] Huang J K, Dong X H. Research progress of meso-damage mechanics for ductile fracture criterion in metal forming[J]. Journal of Shanghai Jiao Tong University, 2006, 40(10): 1748-1753 (in Chinese). 黄建科, 董湘怀. 金属成形中韧性断裂准则的细观损伤力学研究进展[J]. 上海交通大学学报, 2006, 40(10): 1748-1753.

[10] Xie Y M, Yu H P, Chen J, et al. Recent advances of research on application of ductile fracture criteria in sheet metal forming process[J]. Journal of Engineering Design, 2007, 14(1): 6-10 (in Chinese). 谢延敏, 于沪平, 陈军, 等. 板料成形中韧性断裂准则应用研究进展[J]. 工程设计学报, 2007, 14(1): 6-10.

[11] Yang Y Y, Yu Z Q, Li X C, et al. A new ductile fracture criterion and its application to the prediction of forming limit in deep drawing[J]. Journal of Material Science & Technology, 2003, 19(z1): 217-219.

[12] Lei L P, Kim J. Bursting failure prediction in tube hydroforming process by using rigid-plastic FEM combined with ductile fracture criterion[J]. International Journal of Mechanical Sciences, 2002, 44(7): 1411-1428.

[13] Gao F H, Gui L J, Fan Z J. Numerical simulation of the fracture in sheet metal stamping based on ductile criterion[J]. Engineering Mechanics, 2010, 27(2): 204-208 (in Chinese). 高付海, 桂良进, 范子杰. 基于韧性准则的金属板料冲压成形断裂模拟[J]. 工程力学, 2010, 27(2): 204-208.

[14] Takuda H, Mori K. Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture[J]. International Journal of Machine Tools and Manufacturing, 2000, 42(4): 785-798.

[15] Wu J, Zhan M, Jiang H B, et al. A modified Lemaitre ductile fracture criterion and its application to spinning forming[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1309-1317 (in Chinese). 吴卷, 詹梅, 蒋华兵, 等. 一种改进的Lemaitre韧性断裂准则及其在旋压成形中的应用[J]. 航空学报, 2011, 32(7): 1309-1317.

[16] Jain M, Allin J, Lloyd D J. Fracture limit prediction using ductile fracture criteria for forming of an automotive aluminum sheet[J]. International Journal of Mechanical Sciences, 1999, 41(10), 273-288.

[17] Takuda H, Mori K, Hatta N. The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals[J]. Journal of Materials Processing Technology, 1999, 95(1-3): 116-121.

[18] Vallellano C, Morales D, Garcia-Lomas F J. A study to predict failure in biaxially stretched sheets of aluminum alloy 2024-T3[J]. Materials and Manufacturing Processes, 2008, 23(3): 303-310.

[19] Xie Y M, Yu H P, Chen J, et al. Recent research advance of application of ductile fracture criteria in sheet metal forming process[J]. Journal of Harbin Institute of Technology, 2009, 41(1): 169-173 (in Chinese). 谢延敏, 于沪平, 陈军, 等. 韧性断裂准则在板料成形中应用研究进展[J]. 哈尔滨工业大学学报, 2009, 41(1): 169-173.

[20] Hill R. A theory of the yielding and plastic flow of anisotropic metals[C]//Proceedings of the Royal Society of London Series A, 1948: 281-297.

[21] Chen J S, Zhou X B. Suitability of some ductile fracture criteria and yield criteria in forming limit prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8): 969-973 (in Chinese). 陈劼实, 周贤宾. 成形极限预测韧性断裂准则及屈服准则的影响[J]. 北京航空航天大学学报, 2006, 32(8): 969-973.

文章导航

/