固体力学与飞行器总体设计

基于遗传算法与评估模型的飞行载荷实测研究

  • 赵燕
展开
  • 1. 中国飞行试验研究院 飞机所, 陕西 西安 710089;
    2. 西北工业大学 航空学院, 陕西 西安 710072
赵燕 女,博士,高级工程师。主要研究方向:飞行载荷与无网格方法。Tel:029-86830410 E-mail:zhaoyan1031@mail.nwpu.edu.cn

收稿日期: 2013-11-20

  修回日期: 2014-03-28

  网络出版日期: 2014-04-14

Flight Load Measurement Based on Genetic Algorithm and Evaluating Model

  • ZHAO Yan
Expand
  • 1. Institute of Aircraft, Chinese Flight Test Establishment, Xi'an 710089, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-11-20

  Revised date: 2014-03-28

  Online published: 2014-04-14

摘要

为了得到飞行载荷实测所需的最优载荷方程,建立了可表征载荷方程数学意义和物理意义的评估模型,与遗传算法(GA)结合,以载荷方程评估驱动载荷方程建立,形成一种新的载荷方程建立方法——EMGA。通过建立某机翼根部剪力方程,比较了穷尽搜索(ES)法、传统GA和EMGA所建载荷方程的评估模型参数。最后将3种方法建立的方程用于飞行载荷实测。结果发现:和其他两种方法比较,本文提出的EMGA可得到最优的载荷方程;EMGA测得的飞行载荷分散性小,最优载荷方程的测量结果可作为最终的飞行载荷。

本文引用格式

赵燕 . 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014 , 35(9) : 2506 -2512 . DOI: 10.7527/S1000-6893.2014.0031

Abstract

To obtain the optimum load equation for flight load measurement, load-equation-evaluating model is constructed which can represent the math and physics meanings of load equation. Based on the above model and genetic algorithm (GA), a new method of building load equation—EMGA is proposed by the evaluation of load equation driving the building of load equation. Exhaust research (ES) method, traditional GA and EMGA are used to build the shear equations of certain wing root, where the evaluating parameters of load equations obtained with three methods are compared. Moreover, those built equations with the three methods are applied to measure flight load. The results show that the EMGA can obtain the optimum load equation; the dispersion level of flight load using EMGA is lower than those using ES method and GA, and the measured result using the optimum load equation is regarded as the final measured flight load.

参考文献

[1] CCAR—25—R4 Chinese civil aviation regulation[S]. Beijing: Cival Aviation Administration of China, 2011. (in Chinese). CCAR—25—R4 中国民用航空规章[S]. 北京:中国民航总局, 2011.

[2] Kwak D Y, Yoshida K. Flight test measurements of surface pressure on unmanned scaled supersonic experimental airplane[C]//24th Applied Aerodynamics Conference, 2006.

[3] Skopinski T H, Aiken W S, Huston W B. Calibration of strain-gage installations in aircraft structures for measurement of flight loads, NACA Report 1178[R]. Washington, D.C.: NACA, 1954.

[4] Jenkins J M, DeAngelis V M. A summary of numerous strain-gage load calibrations on aircraft wings and tails in a technology format, NASA Technical Memorandum 4804[R]. Washington, D.C.: NASA, 1997.

[5] William A, Stauf L R. Strain-gage loads calibration parametric study, NASA/TM-2004-212853. Washington, D.C.: NASA, 2004.

[6] Lizotte A M, Lokos W A. Deflection-based aircraft structural loads estimation with comparison to flight[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2005.

[7] Guo Z W, Li Z G, Wang Z Y, et al. Measuring missile's suspension flight loads using built-in six-component strain-gage balance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1403-1409. (in Chinese) 郭正旺, 李昭广, 王仲燕, 等. 用内式六分量应变天平实测导弹挂飞载荷[J]. 航空学报, 2010, 31(7): 1403-1409.

[8] Cao X, Sugiyamac Y, Mitsui Y. Application of artificial neural networks to load identification[J]. Computer & Structures, 1998, 69(1): 63-78.

[9] He F D, Shu C H. Application of BP neural networks based on Bayesian regulation to aircraft wing loads analysis[J]. Flight Dynamics, 2009, 27(4): 85-88. (in Chinese) 何发东, 舒成辉. 贝叶斯正则化BP网络在机翼载荷分析中的应用[J]. 飞行力学, 2009, 27(4): 85-88.

[10] Padmanabhan M A, Nagesh K Y, Elattuvalappil H. A statistics based method for mapping flight strains to loads[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conferece, 2006.

[11] Love M H, Yoakum R E. Identification of critical flight loads[C]//44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, 2003.

[12] Coates C W, Thamburaj P. An inverse method for selection of fourier coefficients for flight load identification[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2005.

[13] Leski A, Reymer P, Kurdelski M. Development of load spectrum for full scale fatigue test of a trainer aircraft[C]//26th ICAF Symposium, 2011.

[14] Jebacek I, Horak M. Possibilityies and methods of in-flight loading measurement[J]. Aviation, 2012, 16(2): 47-50.

[15] Gonzalez M, Gogu C, Binaud N, et al. Uncertainty quantification in aircraft load calibration[C]//10th World Congress on Structural and Multidisciplinary Optimization, 2013.

[16] Nelson S A. Strain gage selection in loads equations using a genetic algorithm, NASA Contractor Report 4597[R].Washington, D.C.: NASA, 1994.

[17] Zhao Y, Gao S, Zhang D Y. An improved genetic algorithm for flight measurement[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(8): 1265-1269. (in Chinese) 赵燕, 高尚, 张多源. 一种用于飞行载荷测量的改进遗传算法[J]. 机械科学与技术, 2012, 31(8): 1265-1269.

文章导航

/