基于可靠性优化的芯片自愈型硬件细胞阵列布局方法
收稿日期: 2014-01-06
修回日期: 2014-04-03
网络出版日期: 2014-04-10
基金资助
国家自然科学基金(61202001)
Method to Reliability Improvement of Chip Self-healing Hardware by Array Layout Reformation
Received date: 2014-01-06
Revised date: 2014-04-03
Online published: 2014-04-10
Supported by
National Natural Science Foundation of China (61202001)
以提高可靠性为目标,研究芯片自愈型硬件细胞阵列布局的新结构和新方法.针对传统可靠性模型无法体现细胞内部模块随布局结构动态变化的不足,通过细胞单元电路资源消耗分析,面向二维阵列结构进行了新的可靠性建模.根据新模型,在分析布局结构参数对可靠性影响程度的基础上,提出了一种先分块再分层的细胞布局新结构.用实例验证了新布局结构对可靠性提高的有效性,给出了不同设计任务和细胞电路设计方法情况下确定最佳布局方式的计算方法,并总结出了新布局结构中分块、分层参数选择规律,最终论证了最佳布局方式计算方法和参数选择规律的一般适用性.
张砦 , 王友仁 . 基于可靠性优化的芯片自愈型硬件细胞阵列布局方法[J]. 航空学报, 2014 , 35(12) : 3392 -3402 . DOI: 10.7527/S1000-6893.2014.0038
For the purpose of improving reliability, a new structure and some new methods are raised in this article by array layout reformation. The traditional reliability model assumes that all cells are treated as fixed nodes, which is inconsistent with the implementation process. Actually, the inner modules of cell should always change with the layout of cellular array dynamically. The new reliability model is proposed after the detailed analysis of unit circuit resource consumption on two-dimensional array. The influence of layout parameters is analyzed in detail. Furthermore, block and hierarchical structure is proposed. The effectiveness to improve the reliability is demonstrated based on a case study. As a conclusion, designers can get the optimal layout conformation with different cell circuit situations and design modus. The parameter selection rules of block and hierarchical structure are summed up, and the general applicability of the methods, which are used to calculate the best layout structure are validated finally.
[1] Cui P Y, Xu R, Zhu S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 13-28.(in Chinese) 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1): 13-28.
[2] Xiong J Q, Fan S W. Strategy of fault tolerance and fault rectification for radar antenna platforms and its FPGA implementation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2245-2252.(in Chinese) 熊静琪, 范守文. 面向雷达天线平台的容错纠错策略及其FPGA实现[J]. 航空学报, 2010, 31(11): 2245-2252.
[3] Mange D, Sipper M, Marchal P. Embryonic electronics[J]. Biosystems, 1999, 51(3): 145-152.
[4] Mange D, Sipper M, Stauffer A, et al. Toward robust integrated circuits: the embryonics approach[J]. Proceedings of the IEEE, 2000, 88(4): 516-543.
[5] Canham R, Tyrrell A M. An embryonic array with improved efficiency and fault tolerance[C]//Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware, 2003: 265-272
[6] Zhang Z, Wang Y R, Yang S S, et al. The research of self-repairing digital circuit based on embryonic cellular array[J]. Neural Computing and Applications, 2008, 17(2): 145-151.
[7] Samie M, Dragffy G, Tyrrell A M, et al. Novel bio-inspired approach for fault-tolerant VLSI systems[J]. IEEE Transactions on Very Large Scale Integration Systems, 2013, 21(10): 1878-1891.
[8] Lala P, Kumar B. An architecture for self-healing digital systems[J]. Journal of Electronic Testing, 2003, 19(5): 523-535.
[9] Xu G L, Xia Z H, Wang H B, et al. Design of embryo-electronic systems capable of self-diagnosing and self-healing and configuration control[J]. Chinese Journal of Aeronautics, 2009, 22(6): 637-643.
[10] Zhang X G. Biologically inspired highly reliable electronic systems with self-healing cellular architecture[D]. Bristol: University of the West of England, 2005.
[11] Hao G F, Wang Y R, Zhang Z, et al. In-chip fault localization and self-repairing method for reconfigurable hardware[J]. Acta Electronica Sinica, 2012, 40(2): 384-388. (in Chinese) 郝国锋, 王友仁, 张砦, 等. 可重构硬件芯片级故障定位与自主修复方法研究[J]. 电子学报, 2012, 40(2): 384-388.
[12] Sun C, Wang Y R, Zhang Z, et al. Self fault-tolerant reconfigurable array[J]. Information and Control, 2010, 39(5): 568-573. (in Chinese) 孙川, 王友仁, 张砦, 等. 可重构阵列自主容错方法研究[J]. 信息与控制, 2010, 39(5): 568-573.
[13] Ortega C, Tyrrell A M. Self-repairing multi-cellular hardware: a reliability analysis[C]//5th European Conference on Artificial Life, 1999: 442-446.
[14] Ortega C, Tyrrell A M. Reliability analysis in self-repairing embryonic systems[C]//Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, 1999: 120-128.
[15] Lin Y, Luo W J. Analysis of optimization design in n*n array embryonic system applications[J]. Journal of University of Science and Technology of China, 2007, 37(2): 171-176. (in Chinese) 林勇, 罗文坚. nn阵列胚胎电子系统应用中的优化设计问题分析[J]. 中国科学技术大学学报, 2007, 37(2): 171-176.
[16] Zhang Z, Wang Y R. Guidelines to fault-tolerant strategy selection in embryonics hardware based on reliability Analysis[J]. Systems Engineering-Theory & Practice, 2013, 33(1): 236-242. (in Chinese) 张砦, 王友仁. 基于可靠性分析的胚胎硬件容错策略选择方法[J]. 系统工程理论与实践, 2013, 33(1): 236-242.
[17] Gupta S, Sharma A. Embryonics: a new family of coarse grained FPGA with self repair and self-reproducing properties[J]. International Journal of Electrical and Electronics Engineers, 2010, 2(1): 31-43.
[18] Seffrin A, Biedermann A. Cellular-array implementations of bio-inspired self-healing systems: state of the art and future perspectives[J]. Lecture Notes in Electrical Engineering, 2010, 78: 151-170.
[19] Szasz C, Chindris V. Development of hardware redundant embryonic structure for high reliability control applications[C]//12th International Conference on Optimization of Electrical and Electronic Equipment, 2010: 728-733.
[20] Bremner P, Liu Y, Samie M, et al. SABRE: a bio-inspired fault-tolerant electronic architecture[J]. Bioinspiration & Biomimetics, 2013, 8(1): 1-16.
[21] Stott E, Sedcole P, Cheung P. Fault tolerance and reliability in field programmable gate arrays[J]. IET Computers and Digital Techniques, 2010, 4(3): 196-210.
/
〈 | 〉 |