固体力学与飞行器总体设计

考虑多点保形的结构拓扑优化设计方法

  • 朱继宏 ,
  • 李昱 ,
  • 张卫红 ,
  • 侯杰
展开
  • 西北工业大学 工程仿真与宇航计算技术实验室, 西安 710072
朱继宏 男,教授,博士生导师。主要研究方向:结构优化设计。Tel:029-88493914-1222 E-mail:jh.zhu@nwpu.edu.cn;李昱 男,博士研究生。主要研究方向:结构变形行为设计。Tel:029-88493914-1222 E-mail:liyu@mail.nwpu.edu.cn;张卫红 男,教授,博士生导师。主要研究方向:多学科优化设计。Tel:029-88495774 E-mail:zhangwh@nwpu.edu.cn;侯杰 男,博士研究生。主要研究方向:结构连接件设计。Tel:029-88493914-1222 E-mail:Hou.jie@live.cn

收稿日期: 2014-03-12

  修回日期: 2014-03-31

  网络出版日期: 2014-04-09

基金资助

国家自然科学基金(51275424,11002113,11172236);国家"973"计划(2011CB610304);西北工业大学基础研究基金(NPU-FFR-JC20120229)

Structure topology optimization with multi-point shape-preserving constraint

  • ZHU Jihong ,
  • LI Yu ,
  • ZHANG Weihong ,
  • HOU Jie
Expand
  • Engineering Simulation & Aerospace Computing Laboratory, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-03-12

  Revised date: 2014-03-31

  Online published: 2014-04-09

Supported by

National Natural Science Foundation of China (51275424, 11002113, 11172236); National Basic Research Program of China (2011CB610304); Northwestern Polytechnical University Fund of Fundamental Research (NPU-FFR-JC20120229)

摘要

为了抑制飞行器结构局部区域内多个控制点的翘曲变形,提出考虑结构保形的拓扑优化设计新方法。基于由局部区域内保形控制点生成的人工附加弱单元(AWE),定义AWE的变形能约束函数,从而引入了对结构局部区域的多点保形约束,定量衡量并抑制了该区域内结构的弹性翘曲变形程度。进一步讨论并分析了保形约束与整体刚度之间的消长关系以及优化过程中可能存在的传力路径畸变现象。拓扑优化数值算例的设计结果对比表明,保形拓扑优化方法相比现有拓扑优化方法,能够有效抑制多点间的相对位移和翘曲变形,实现保形设计效果。

本文引用格式

朱继宏 , 李昱 , 张卫红 , 侯杰 . 考虑多点保形的结构拓扑优化设计方法[J]. 航空学报, 2015 , 36(2) : 518 -526 . DOI: 10.7527/S1000-6893.2014.0035

Abstract

The purpose of this paper is to present an extended topology optimization suppressing the warping deformation of multiple control points in aircraft structural local domain. By applying artificial week elements (AWE) established with respect to the control points of shape-preserving design, the elastic warping deformation is quantified and suppressed by constraining the strain energies of AWE. Moreover, further studies on the paradox between shape-preserving constraint and global strain energy, probable distortion of load carrying path during topology optimization are carried out for in-depth understanding. Comparisons of several numerical results with the standard topology optimization have evidently shown that the effect of shape-preserving is successfully achieved by suppressing the warping deformation and controlling the relative displacements of multiple control points.

参考文献

[1] Bendsøe M P. Topology optimization: theory, methods and applications[M]. Berlin: Springer, 2003: 25.

[2] Guo X, Cheng G D. Recent development in structural design and optimization[J]. Acta Mechanica Sinica, 2010, 26(6): 807-823.

[3] Deaton J D, Grandhi R V. A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38.

[4] Sigmund O. A 99 line topology optimization code written in MATLAB[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 120-127.

[5] Pedersen N L. Maximization of eigenvalues using topology optimization[J]. Structural and Multidisciplinary Optimization, 2000, 20(1): 2-11.

[6] Zhu J H, Zhang W H. Maximization of structural natural frequency with optimal support layout[J]. Structural and Multidisciplinary Optimization, 2006, 31(6): 462-469.

[7] Rong J H, Yi J H. A structural topological optimization method for multi-displacement constraints and any initial topology configuration[J]. Acta Mechanica Sinica, 2010, 26(5): 735-744..

[8] París J, Navarrina F, Colominas I, et al. Topology optimization of continuum structures with local and global stress constraints[J]. Structural and Multidisciplinary Optimization, 2009, 39(4): 419-437.

[9] Zhang W H, Luo X T, Wang Z P, et al. Structural analysis and optimization technique of aircraft assembly fixture[J]. Aeronautical Manufacturing Technology, 2009, 25:40-43 (in Chinese). 张卫红, 罗小桃, 王振培, 等. 飞机装配工装结构分析与优化技术[J]. 航空制造技术, 2009, 25: 40-43.

[10] Wang B Z. Aircraft design manual: structure: Vol. 10[M]. Beijing: Aviation Industry Press, 2000: 21-24 (in Chinese). 王宝忠. 飞机设计手册: 结构设计(第10册)[M]. 北京: 航空工业出版社, 2000: 21-24.

[11] Zhu J H, Zhang W H, Beckers P. Integrated layout design of multi-component system[J]. International Journal for Numerical Methods in Engineering, 2009, 78(6): 631-651.

[12] Zhu J H, Zhang W H. Integrated layout design of supports and structures[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9): 557-569.

[13] Kang Z, Wang Y. Integrated topology optimization with embedded movable holes based on combined description by material density and level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 255: 1-13.

[14] Yang D Q.Topology optimization design of continuum structures under stress and displacement constraints[J]. Applied Mathematics and Mechanics, 2000, 21(1): 19-26.

[15] Liu S T, An X M, Jia H P. Topology optimization of beam cross-section considering warping deformation[J]. Structural and Multidisciplinary Optimization, 2008, 35(5): 403-411.

[16] Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9-10): 635-654.

[17] Rozvany G I N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 90-108.

[18] Bendsøe M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193-202.

[19] Svanberg K. A globally convergent version of MMA without linesearch[C]//Proceedings of the First World Congress of Structural and Multidisciplinary Optimization. Goslar, Germany: Springer-Verlag, 1995, 28: 9-16.

文章导航

/