气核尺寸对气液同轴离心式喷嘴自激振荡的影响
收稿日期: 2014-01-21
修回日期: 2014-03-19
网络出版日期: 2014-04-08
基金资助
国家"973"计划(613239);国家自然科学基金(11472303,11402298);新世纪优秀人才支持计划(NCET-13-0156)
Influence of Gas Core Dimension on Self-pulsation of Gas-liquid Swirl Coaxial Injector
Received date: 2014-01-21
Revised date: 2014-03-19
Online published: 2014-04-08
Supported by
National Basic Research Program of China (613239); National Natural Science Foundation of China (11472303, 11402298); Program for New Century Excellent Talents in University (NCET-13-0156)
为了研究气核尺寸对气液同轴离心式喷嘴自激振荡的影响,采用水和空气作为模拟介质,开展了室压条件下冷态喷雾试验.通过试验分析了气核尺寸较大时气液同轴离心式喷嘴自激振荡的喷雾形态,与文献中气核尺寸较小时的喷雾形态进行对比发现气核尺寸不同时,该类喷嘴自激振荡的喷雾形态不同,气核尺寸较大时呈"圣诞树"型分布,气核尺寸较小时呈"串"型分布.气核尺寸对气液同轴离心式喷嘴自激振荡的产生机理有显著影响,由于自激振荡产生机理的不同,喷嘴缩进长度对自激振荡的影响也不同,气核尺寸较大时自激振荡频率随着喷嘴缩进长度呈复杂变化特征,气核尺寸较小时喷嘴缩进长度对自激振荡频率没有影响.气液同轴离心式喷嘴自激振荡频率为2~4 kHz,与燃烧室一阶振型接近,喷雾自激振荡可能会诱发燃烧室不稳定燃烧.
康忠涛 , 张新桥 , 成鹏 , 李清廉 , 王振国 . 气核尺寸对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2014 , 35(12) : 3283 -3292 . DOI: 10.7527/S1000-6893.2014.0023
To understand the influence of gas core dimension on self-pulsation characteristics of gas-liquid swirl coaxial injector, non-reactive spray experiments are conducted with water and air at atmospheric pressure. The spray morphology of gas-liquid swirl coaxial injectors with different gas core dimensions is investigated while self-pulsation happens. Self-pulsation morphology changes with gas core dimension; the spray looks like a Christmas tree with a large gas core, and a string of pearl with small gas core. The results indicate that gas core dimension significantly affects the self-pulsation mechanism, which in turn varies the influence of recess length on self-pulsation. Self-pulsation frequency varies complicatedly with recess length when gas core dimension is large enough. But with a small gas core, the recess length can hardly change the frequency of self-pulsation. In general, self-pulsation frequency is in the range of 2-4 kHz, which corresponds to frequency range of first transrerse mode in combustion instability. Namely, self-pulsation can trigger combustion instability.
[1] Im J H, Kim D, Yoon Y, et al. Self-pulsation characteristics of a swirl coaxial injector with various injection and geometric conditions, AIAA-2005-3749[R]. Reston: AIAA, 2005.
[2] Yoshio N, Hiroshi S, Hiroshi T, et al. An experimental study of super-pulsating flow on a shear coaxial injector with a recessed inner post, AIAA-2007-5560[R]. Reston: AIAA, 2007.
[3] Yoshio N, Hiroshi T, Takuo O, et al. Effect of liquid disintegration on flow instability in a recessed region of a shear coaxial injector, AIAA-2009-5389[R]. Reston: AIAA, 2009.
[4] Kim B D, Heister S D. Effect of chamber pressure variation on high-frequency hydrodynamic instability of shear coaxial injector, AIAA-2004-3522[R]. Reston: AIAA, 2004.
[5] Tsohas J, Heister S D. Numerical simulations of liquid rocket coaxial injector hydrodynamics[J]. Journal of Propulsion and Power, 2011, 27(4): 793-810.
[6] Kim B D, Heister S D, Collicott S H. Three-dimensional flow simulations in the recessed region of a coaxial injector[J]. Journal of Propulsion and Power, 2005, 21(4): 728-742.
[7] Kim B D, Heister S D. Two-phase modeling and hydrodynamic instability in coaxial injectors[J]. Journal of Propulsion and Power, 2004, 20(3): 468-479.
[8] Yang L J, Fu Q F. Stability of confined gas-liquid shear flows in recessed shear coaxial injectors[J]. Journal of Propulsion and Power, 2012, 28(6): 1413-1424.
[9] Yoon J, Chung J M, Yoon Y. Study on self-pulsation characteristics of gas/liquid shear coaxial injector with annular liquid sheets, AIAA-2012-3859[R]. Reston: AIAA, 2012.
[10] Bazarov V. Self-pulsations in coaxial injectors with central swirl liquid stage, AIAA-1995-2358[R]. Reston: AIAA, 1995.
[11] Bazarov V, Yang V. Liquid-propellant rocket engine injector dynamics[J]. Journal of Propulsion and Power, 1998, 14(5): 797-806.
[12] Bazarov V. Influence of propellant injector stationary and dynamic parameters on high frequency combustion stability, AIAA-1996-3119[R]. Reston: AIAA, 1996.
[13] Bazarov V. Non-linear interactions in liquid-propellant rocket engine injectors, AIAA-1998-4039[R]. Reston: AIAA, 1998.
[14] Yang L J, Ge M H, Zhang M Z, et al. Spray characteristics of recessed gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2008, 24(6): 1332-1339.
[15] Sasaki M, Sakamoto H, Takahashi M, et al. Comparative study of recessed and non-recessed swirl coaxial injectors, AIAA-1997-2907[R]. Reston: AIAA, 1997.
[16] Huang Y, Zhou J, Hu X, et al. Acoustic model for the self-oscillation of coaxial swirl injector, AIAA-1997-3328[R]. Reston: AIAA, 1997.
[17] Chad J E, David M L, Robert A F J. Detailing the stability boundary of self-pulsations for a swirl-coaxial injector element, AIAA-2013-4064[R]. Reston: AIAA, 2013.
[18] Chad J E, David M L, Robert A F J. Propellant throttling effects on self-pulsation of liquid rocket swirl-coaxial injection, AIAA-2012-4204[R]. Reston: AIAA, 2012.
[19] Im J H, Kim D, Han P, et al. Self-pulsation characteristics of a gas-liquid swirl coaxial injector[J]. Atomization and Sprays, 2009, 19(1): 57-74.
[20] Im J H, Yoon Y. The Effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector, AIAA-2008-4850[R]. Reston: AIAA, 2008.
[21] Fu Q F, Yang L J. Theoretical investigation on the dynamics of a gas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power, 2011, 27(1): 144-150.
[22] Im J H, Seongho C, Youngbin Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6): 1196-1204.
[23] Kim S, Khil T, Kim D, et al. Effect of geometric parameters on the liquid film thickness and air core formation in a swirl injector[J]. Measurement Science and Technology, 2009, 20(1): 1-11.
/
〈 | 〉 |