基于混合特征匹配的微惯性/激光雷达组合导航方法
收稿日期: 2013-11-27
修回日期: 2014-03-05
网络出版日期: 2014-04-04
基金资助
国家自然科学基金(61273057,61374115);江苏省普通高校研究生科研创新项目(CXZZ12_0159)
MEMS IMU/LADAR Integrated Navigation Method Based on Mixed Feature Match
Received date: 2013-11-27
Revised date: 2014-03-05
Online published: 2014-04-04
Supported by
National Natural Science Foundation of China(61273057, 61374115); Funding of Jiangsu Innovation Program for Graduate Education (CXZZ12_0159)
微惯性/激光雷达(MEMS IMU/LADAR)组合导航系统在室内应用时,由于室内结构化环境下环境特征(如点和线段)分布稀疏,传统的单一特征匹配算法存在观测盲区,易造成导航定位参数估计误差大的问题。基于此,研究了激光雷达自适应数据分割方法的点和线段的特征提取算法,提出了基于混合特征匹配观测模型的MEMS IMU/LADR扩展卡尔曼滤波(EKF)算法。同时,设计了MEMS IMU/LADR组合导航试验样机,在室内环境下通过试验对滤波算法进行了验证。结果表明:提出的算法在室内结构化环境下相比传统单一点或线特征匹配组合定位算法的定位精度可提高60%,对于小型旋翼无人飞行器在室内结构化环境中的高精度定位具有较高的参考意义。
杭义军 , 刘建业 , 李荣冰 , 孙永荣 . 基于混合特征匹配的微惯性/激光雷达组合导航方法[J]. 航空学报, 2014 , 35(9) : 2583 -2592 . DOI: 10.7527/S1000-6893.2014.0013
Usually, there are observation blind areas existing in that the distribution of land marks like angular point and line segment is parse in indoor environment. Then the locating accuracy of vehicle and the estimating precision of land marks is affected by the lack of observed quantities when using the traditional single feature matching algorithm. To solve these problems, the adaptive segmentation method of LADAR is studied, and the extraction algorithm of different types of land marks is researched, then the extended Kalman filter is presented based on the mixed feature matching observation model. At the same time, a test prototype of MEMS IMU/LADAR integrated navigation system is designed. To validate the filtering fusion algorithm, the analysis and tests are carried out in the indoor environment. The test results show that the accuracy of proposed algorithm relative to the traditional algorithm(a single point or line feature match integrated location algorithm) in the structured indoor environment increass about 60%. This indicates that the algorithm is efficient when used to improve accuracy of the MEMS IMU/LADAR integrated navigation system.
[1] Chen W D, Liu Y L, Zhu Q G, et al. Fuzzy adaptive extended Kalman filter SLAM algorithm based on the improved wild geese PSO algorithm[J]. Acta Physic Sinica, 2013, 62(17): 170506.
[2] Lee Y J, Song J B, Choi J H. Performance improvement of iterative closest point-based outdoor SLAM by rotation invariant descriptors of salient regions[J]. Journal of Intelligent & Robotic Systems, 2013, 71(3-4): 349-360.
[3] Marco B, Antonio S, Damiano V, et al. Human navigation and mapping with a 6DOF IMU and a laser scanner[J].Robotics and Autonomous Systems, 2011, 59(12): 1060-1069.
[4] Bailey T, Durrant W H. Simultaneous localization and mapping (SLAM): Part Ⅱ, state of theart[J]. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-127.
[5] Zhou G J, Yu C J, Cui N G, et al. A tracking filter in spherical coordinates enhanced by de-noising of converted Doppler measurements[J]. Chinese Journal of Aeronautics, 2012, 25(5): 757-765.
[6] Liu J Y, Hang Y J, Li R B, et al. Optimization design technology of environmental worthiness for MEMS inertial attitude reference system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 670-676.(in Chinese) 刘建业, 杭义军, 李荣冰, 等. MEMS微惯性姿态系统的环境适应性优化设计技术[J]. 南京航空航天大学学报, 2012, 44(5): 670-676.
[7] Sharma A, Zaman M F, Zucher M, et al. A 0.1°/hr bias drift electronically matched tuning fork micro gyroscope[C]//IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008: 6-8.
[8] Li Y, Ruichek Y, Cappelle C. Optimal extrinsic calibration between a stereoscopic system and a LIDAR[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(8): 2258-2269.
[9] Yuan G N, Wang D D, Wei Y H, et al. Particle filter SLAM algorithm for underwater oil pipeline leakage detection and positionin[J]. Journal of Chinese Inertial Technology, 2013, 21(2): 204-208.(in Chinese) 袁赣南, 王丹丹, 魏延辉, 等. 水下石油管道漏油检测定位的粒子滤波SLAM算法[J]. 中国惯性技术学报, 2013, 21(2): 204-208.
[10] Haag M. Aiding techniques for integration of ladar with inertial navigation system[C]//Position Location and Navigation Symposium, 2010.
[11] Kim J, Sukkarieh S. 6DoF SLAM aided GNSS/INS navigation in GNSS denied and unknown environments[J]. Journal of Global Positioning Systems, 2005, 4(1-2): 120-128.
[12] Fernando A C, Gustavo S. Laser-based trespassing prediction in restrictive environments a linear approach[J]. Sensors, 2012, 12(9): 11870-11887.
[13] Daniele A A. Cooperative SLAM using M-Space representation of linear features[J]. Robotics and Autonomous Systems, 2012, 60(10): 1267-1278.
[14] Li R B, Liu J Y, Sun Y R. MEMS-IMU configuration and its inertial sensors' calibration for installation errors[J]. Journal of Chinese Inertial Technology, 2007, 15(5): 526-529.(in Chinese) 李荣冰, 刘建业, 孙永荣. MEMS-IMU 构型设计及惯性器件安装误差标定方法[J]. 中国惯性技术学报, 2007, 15(5): 526-529.
[15] Kim S J, Kim B K. Dynamic ultrasonic hybrid localization system for indoor mobile robots[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4562-4573.
[16] Farhad A. 3D SLAM using IMU and its observability analysis[C]//Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, 2010: 377-383.
[17] Zhang G L, Tang W J, Jing B, et al. EKF-SLAM algorithm based on line segment matching[J]. Control Engineering of China, 2012, 19(6): 1019-1028.(in Chinese) 张国良, 汤文俊, 敬斌, 等. 基于线段特征匹配的EKF-SLAM算法[J]. 控制工程, 2012, 19(6): 1019-1028.
/
〈 | 〉 |