流体力学、飞行力学与发动机

高超声速飞行器制导与控制研究现状及发展趋势

  • 方洋旺 柴栋 毛东辉 张磊
展开
  • 1. 陕西省西安市空军工程大学工程学院二系
    2. 空军工程大学航空航天工程学院
    3. 空军工程大学航空航天工程学院研4队

收稿日期: 2014-01-01

  修回日期: 2014-03-22

  网络出版日期: 2014-04-01

基金资助

西北工业大学基础研究基金;学校级项目

Status and Development Trend of the Guidance and Control for Hypersonic Vehicle

Expand

Received date: 2014-01-01

  Revised date: 2014-03-22

  Online published: 2014-04-01

摘要

制导与控制技术是发展高超声速飞行器的关键技术,同时也是控制学科研究的热点问题,许多先进控制理论在此领域得到应用。分析了吸气式高超声速飞行器动力学模型非线性、强耦合和不确定性等特点,指出高超声速飞行器制导与控制技术面临的挑战。在综述国内外研究成果的基础上,对吸气式高超声速飞行器制导与控制中基于线性化的非线性控制方法和直接针对非线性模型的控制方法分类讨论,分析了尚待解决的问题和不足。最后,结合吸气式高超声速飞行器鲁棒性、自适应性和智能化的目标,从面向机动目标制导律、高速目标拦截器制导律、全空域机动飞行控制和先进智能控制理论等方面展望了此领域研究的发展趋势。

本文引用格式

方洋旺 柴栋 毛东辉 张磊 . 高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2014.0021

Abstract

Guidance and control technique is one of the key technologies of hypersonic vehicles, and it is also a focus issue in control discipline, which many advanced control theories have been applied in the field. The paper analyzes the nonlinearity, strong couplings, uncertainties and other characteristics of the air-breathing hypersonic vehicle’s dy-namic model, and points out the challenges of guidance and control technique for hypersonic vehicle. Then, based on combing the domestic and foreign research results, the theories and approaches for this issue are discussed particularly by classification, including nonlinear control based on linearization and nonlinear control directly against nonlinear model. In addition, the unsolved problems and deficiencies in this field are analyzed by reviewing existing literature. Finally, combined with the goal of robustness, adaptability and intellectuality for the air-breathing hypersonic vehicle, the development tendency is suggested in the following four aspects: guidance law for tracking maneuvering target, guidance law of interceptor against hypersonic target, maneuvering control in all-aerospace and advanced intelligent control theories.

参考文献

[1] HUANG L, DUAN Z S, YANG J Y. Challenges of control science in near space hypersonic aircrafts [J]. Control Theory & Applications, 2011, 28(10): 1496-1505. (in Chinese)
黄琳, 段志生, 杨剑影. 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10): 1496-1505.
[2] Eric N J. Feedback linearization with neural network augmentation applied to X-33 attitude control [R]. Altanta: AIAA, 2000: 4157-4167.
[3] ZENG X F, WANG X H, ZHANG J, et al. Disturbance compensated terminal sliding mode control for hypersonic vehicles [J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11): 1454-1458. (in Chinese)
曾宪法, 王小虎, 张晶 等. 高超声速飞行器的干扰补偿Terminal滑模控制[J]. 北京航空航天大学学报, 2012, 38(11): 1454-1458.
[4] SONG C, ZHAO G R, GAI J F. Sliding mode backstepping control for hypersonic aircraft based on nonlinear disturbance observer [J]. Systems Engineering and Electronics, 2012, 34(6): 1231-1234. (in Chinese)
宋超, 赵国荣, 盖俊峰. 基于非线性干扰观测器的高超声速飞行器反演滑模控制[J]. 系统工程与电子技术, 2012, 34(6): 1231-1234.
[5] HU X, WU L, HU C, et al. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. Control Theory & Applications, 2012, 6(9): 1238–1249.
[6] Dalle D J, Frendreis S V, Driscoll J F. Hypersonic vehicle flight dynamics with coupled aerodynamics and reduced-order propulsive models [C]. AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada: AIAA, 2010.
[7] Wilcox Z D, Mackunis W, Bhat S, et al. Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects [J]. Journal of Guidance, Control and Dynamics, 2010, 33(4): 1213-1224.
[8] McNamara J J, Crowell A R, Friedmann P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity [J]. Journal of Aircraft, 2010, 47(6): 1932-1945.
[9] LI H F, LIN P, XU D J. Control-oriented modeling for air-breathing hypersonic vehicle using parameterized configuration approach [J]. Chinese Journal of Aeronautics, 2011, 24(1): 81-89.
[10] WANG J B, REN Z. A new piecewise predictive guidance for the long-range reentry vehicles [C]. 2011 International Conference on Electrical and Control Engineering, 2011, 09: 521-525.
[11] Mease K D. Reduced-order entry trajectory planning for acceleration guidance [J]. Journal of Guidance, Control and Dynamics, 2002, 25(2): 257-266.
[12] Mease K D. Design and evaluation of an acceleration guidance algorithm for entry [J]. Journal of Spacecraft and Rockets, 2004, 41(6): 986-996.
[13] Dukeman G A. Profile-following entry guidance using linear quadratic regulator theory [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, 2002.
[14] Zimmerman C, Dukeman G A, Hanson J M. Automated method to compute orbital reentry trajectories with heating constraints [J]. Journal of Guidance, Control and Dynamics, 2003, 26(4): 523-529.
[15] Kevin P B Michael R. Optimal nonlinear feedback guidance for reentry vehicles [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 21-24 August 2006.
[16] ZHANG Z, HU J, WANG Y. Characteristic model-based reentry vehicle guidance law design [J]. Aerospace Control and Application, 2010, 36(4): 12-17. (in Chinese)
张钊, 胡军, 王勇. 基于特征模型的再入飞行器制导律设计[J]. 空间控制技术与应用, 2010, 36(4): 12-17.
[17] SHEN Z, HU Y, REN Z, et al. A new on-Line planning method for RLV reentry trajectory design [J]. Journal of Astronautics, 2011, 32(8): 1670-1675. (in Chinese)
沈振, 胡钰, 任章 等. 一种新型RLV再入轨迹在线规划方法[J]. 宇航学报, 2011, 32(8): 1670-1675.
[18] Sivan K, Amma S S, Joshi A, et al. An adaptive reentry guidance [R]. Indian: Indian Institute of Technology Bombay, 2004.
[19] Joshi A, Sivan K, Amma S S. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles [J]. Journal of Guidance, Control and Dynamics, 2007, 30(5): 1307-1318.
[20] Christopher W B, Lu P. Skip entry trajectory planning and guidance [J]. Journal of Guidance, Control and Dynamics, 2008, 31(5): 1210-1219.
[21] Xue S B, Lu P. Constrained predictor-corrector entry guidance [C]. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, Aug.10-13, 2009.
[22] SHUI Z S, ZHOU J, GE Z L. On-line predictor-corrector reentry guidance law based on gauss pseudospectral method [J]. Journal of Astronautics, 2011, 32(6): 1249-1255. (in Chinese)
水尊师, 周军, 葛致磊. 基于高斯伪谱方法的再入飞行器预测校正制导方法研究[J]. 宇航学报, 2011, 32(6): 1249-1255.
[23] LI H F, XIE L. Reentry guidance law design for RLV based on predictor-corrector method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1344-1348. (in Chinese)
李惠峰, 谢陵. 基于预测校正方法的RLV再入制导律设计[J]. 北京航空航天大学学报, 2009, 35(11): 1344-1348.
[24] XU M L, CHEN K J, LIU L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles [J]. Sci China Tech Sci, 2012, 55: 856-866.
[25] HU S G, FANG Y W, ZHANG P, et al. Design and simulation of guidance law for a kind of near-space hypersonic vehicle [J]. Journal of Ballistics, 2011, 23(3): 7-12. (in Chinese)
胡诗国, 方洋旺, 张平 等. 一种近空间高超声速飞行器的制导律设计与仿真[J]. 弹道学报, 2011, 23(3): 7-12.
[26] HU S G, FANG Y W, GAO X. A new optimal guidance law for near space hypersonic vehicle based on Markov jump linear system [C]. 2011 Chinese Control and Decision Conference, 2011.
[27] SANG B H, JIANG C S. Virtual target differential game midcourse guidance law for hypersonic cruise missile based on neural network [J]. Transactions of Nanjing University of Aeronautics & Astronautic, 2008, 25(2): 121-126.
[28] WANG Y Z, SHI X P, ZHU Y. A novel switching guidance law against hypersonic random maneuvering target [C]. 2010 Chinese Control and Decision Conference, 2010.
[29] MENG Z J, CHEN K, HUANG P F, et al. Design of accurate guidance for hypersonic vehicle [J]. Flight Dynamics, 2009, 27(2): 38-41. (in Chinese)
孟中杰, 陈凯, 黄攀峰 等. 高超声速战术导弹精确制导律设计[J]. 飞行力学, 2009, 27(2): 38-41.
[30] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle [J]. Journal of Guidance, Control, and Dynamic, 2007, 30(3): 856-859.
[31] HU X X, WU L G, HU C H, et al. Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle [J]. Journal of the Franklin Institute, 2012, 349: 559-577.
[32] SHI J M, WANG J, WANG K, et al. Design of backstepping controller for longitudinal motion of an air-breathing hypersonic vehicle[J]. Journal of Xi’an Jiaotong University, 2013, 47(3): 102-107. (in Chinese)
时建明, 王洁, 王琨 等. 吸气式高超声速飞行器纵向运动反演控制器设计[J]. 西安交通大学学报, 2013, 47(3): 102-107.
[33] Davidson J, Lallman F, McMinn J D, et al. Flight control laws for NASA’s hyper-X research vehicle [R]. AIAA-99-4124, 1999.
[34] HUANG X L, GE D M. Robust gain-scheduling control of hypersonic vehicle subject to input constraints [J]. Systems Engineering and Electronic, 2011, 33(8): 1829-1936. (in Chinese)
黄显林, 葛东明. 输入受限高超声速飞行器鲁棒变增益控制[J]. 系统工程与电子技术, 2011, 33(8): 1829-1936.
[35] HUANG X L, GE D M. Robust linear parameter-varying control for longitudinal maneuvering flight of air-breathing hypersonic vehicle [J]. Journal of Astronautics, 2010, 31(7): 1789-1797. (in Chinese)
黄显林, 葛东明. 吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制[J]. 宇航学报, 2010, 31(7): 1789-1797.
[36] HU S G, FANG Y W, XIAO B S, et al. Near space hypersonic vehicle longitudinal motion control based on Markov jump system theory [C]. Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, July 6-9 2010. (in Chinese)
胡诗国, 方洋旺, 肖冰松 等. 基于Markov跳变系统的临近空间高超声速飞行器纵向控制[C]. 第八届全球智能控制与自动化大会, 济南, 2010.
[37] HU Z B, MO B, ZHOU D Z, et al. Robust nonlinear control of a hypersonic aircraft based on sliding mode control [J]. Procedia Engineering, 2012, 29: 839-842.
[38] GAO G, WANG J Z. Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties [J]. Journal of the Franklin Institute, 2013, 350: 1155-1188.
[39] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland: AIAA, 1999: 413-423.
[40] LI H F, SUN W C. Exponential approach law based sliding control for a hypersonic vehicle [J]. Aerospace control and application, 2009, 35(4): 39-43.
[41] LIU Y, LU Y P. Longitudinal inversion flight control based on variable structure theory for hypersonic vehicle [J]. Information and control, 2006, 35(3): 388-392.
[42] LU B, LU Y P, FANG X G. Neural network dynamic inversion control for a hypersonic flight vehicle [J]. Computer Measurement & Control, 2008, 16(7): 966-968. (in Chinese)
鲁波, 陆宇平, 方习高. 高超声速飞行器的神经网络动态逆控制研究[J]. 计算机测量与控制, 2008, 16(7): 966-968.
[43] ZONG Q, LV L, TIAN B L, et al. Nonlinear Control for near space vehicle via backstepping method [J]. Control Engineering of China, 2012, 19(5): 860-863. (in Chinese)
宗群, 吕力, 田柏苓 等. 基于Backstepping的临近空间飞行器非线性控制[J]. 控制工程, 2012, 19(5): 860-863.
[44] Fiorentini L, Serrani A. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles [J]. Journal of Guidance, Control and Dynamics, 2009, 32(2): 401-416.
[45] Taeyoung L, Youdan K. Nonlinear adaptive flight control using backstepping and neural networks controller [J]. Journal of Guidance, Control and Dynamic, 2001: 24(4): 675-682.
[46] GAO D X, SUN Z Q, LUO X, et al. Fuzzy adaptive control for hypersonic vehicle via backstepping method [J]. Control Theory & Applications, 2008, 25(5): 805-809. (in Chinese)
高道祥, 孙增圻, 罗熊 等. 基于Backstepping的高超声速飞行器模糊自适应控制[J]. 控制理论与应用, 2008, 25(5): 805-809.
[47] WANG J B, QU X, REN Z. Hybrid reentry guidance based on the online trajectory planning [J]. Journal of Astronautics, 2012, 33(9): 1217-1224.
[48] ZHANG J, ZHAO D A, WANG M. A robust decoupling control law for hypersonic vehicle [J]. Journal of Astronautics, 2011, 32(5): 1100-1107. (in Chinese)
张军, 赵德安, 王玫. 一种高超声速飞行器的鲁棒解耦控制方法[J]. 宇航学报, 2011, 32(5): 1100-1107.
[49] WANG Y F, JIANG C S, WU Q X. Multi-model soft-switching cost-guaranteed non-fragile control for near-space vehicle [J]. Control Theory & Applications, 2012, 29(4): 440-446. (in Chinese)
王宇飞, 姜长生, 吴庆宪. 近空间飞行器多模型软切换保性能非脆弱控制[J]. 控制理论与应用, 2012, 29(4): 440-446.
[50] WANG Q, LI X G. Adaptive inverse control of a generic hypersonic vehicle based on improved EMRAN [J]. Advanced in Control Engineering and Information Science, 2011, 15: 277-281.
[51] QIN C M, QI N M, ZHU K. Active disturbance rejection attitude control design for hypersonic vehicle [J]. Systems Engineering and Electronics, 2011, 33(7): 1607-1610. (in Chinese)
秦昌茂, 齐乃明, 朱凯. 高超声速飞行器自抗扰姿态控制器设计[J]. 系统工程与电子技术, 2011, 33(7): 1607-1610.
文章导航

/