固体力学与飞行器总体设计

海绵/橡胶适配器应力和变形模式的轴对称平面应变解析

  • 仲健林 ,
  • 马大为 ,
  • 李士军 ,
  • 任杰 ,
  • 胡建国
展开
  • 1. 南京理工大学 机械工程学院, 江苏 南京 210094;
    2. 中国船舶重工集团公司713研究所, 河南 郑州 450015
仲健林 男, 博士研究生.主要研究方向: 固体力学、复合材料力学、发射动力学. Tel: 025-84315125 E-mail: njustzhongjianlin@163.com

收稿日期: 2013-12-24

  修回日期: 2014-03-03

  网络出版日期: 2014-03-28

基金资助

国家自然科学基金(51303081);江苏省普通高校学术学位研究生科研创新计划(KYLX_0398)

Axisymmetric Plain Strain Analysis of Stress and Deformation Mode for Foam/Rubber Adapter

  • ZHONG Jianlin ,
  • MA Dawei ,
  • LI Shijun ,
  • REN Jie ,
  • HU Jianguo
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. 713th Research Institute of China Shipbuilding Industry Corporation, Zhengzhou 450015, China

Received date: 2013-12-24

  Revised date: 2014-03-03

  Online published: 2014-03-28

Supported by

National Natural Science Foundation of China (51303081); Graduate Student Research and Innovation Program of Jiangsu Province (KYLX_0398)

摘要

海绵/橡胶适配器的应力和变形模式的解析方法是其力学理论研究的重要前提.基于轴对称平面应变假设,推导了海绵圆筒和橡胶圆筒的径向应力、切向应力和径向位移的解析公式;建立了位移边界条件下适配器受压问题的非线性常微分解析方程组,并通过数值模型仿真验证了解析公式推导的正确性;调整海绵/橡胶粘合面半径,研究了海绵层厚度比对适配器受压力学特性的影响.结果表明:数值模型和解析公式计算结果基本一致;适配器海绵层径向应力值和切向应力值相差不大,橡胶层切向应力高于径向应力约1个数量级,径向应力最大值位于适配器外表面,切向应力和径向位移最大值均位于海绵/橡胶粘合面;随海绵层厚度比增加,适配器应力和位移减小且减幅越来越小.

本文引用格式

仲健林 , 马大为 , 李士军 , 任杰 , 胡建国 . 海绵/橡胶适配器应力和变形模式的轴对称平面应变解析[J]. 航空学报, 2014 , 35(12) : 3324 -3330 . DOI: 10.7527/S1000-6893.2014.0009

Abstract

The analytical method of stress and deformation mode for foam/rubber adapter is an important premise for mechanical theory research of the adapter. Based on the axisymmetric plain strain assumption, the analytical formulas of the radial stress, tangential stress, and radial displacement for the foam and rubber hollow cylinders are derived. A set of nonlinear ordinary differential analytical equations for the adapter compression problem under displacement boundary conditions are built and the correctness of the analytical formulas is verified by the simulation of the numerical model. The radius of the foam/rubber bonding surface is changed and the influence on the adapter compression characteristic brought by the thickness ratio of the foam layer is researched. The results show that the calculation results of the numerical model and analytical formulas are basically the same; the radial stress and the tangential stress of the adapter foam layer differ little in value; the tangential stress is higher than the radial stress by an order of magnitude in the rubber layer; the maximum radial stress locates on the outer surface of the adapter and the maximum tangential stress and radial displacement locate on the foam/rubber bonding surface; and with the increase of the foam layer thickness ratio, the stress and displacement of the adapter decrease and the decrement decreases.

参考文献

[1] Zhao H, Wang M J, Yang W, et al. Adapters for canister-launched missile[J]. Tactical Missile Technology, 2007(4): 42-50. (in Chinese) 赵华, 王敏杰, 杨为, 等. 箱式发射导弹适配器[J]. 战术导弹技术, 2007(4): 42-50.

[2] Dienes J K, Solem J C. Nonlinear behavior of some hydrostatically stressed isotropic elastomeric foams[J]. Acta Mechanica, 1999, 138(3-4): 155-162.

[3] Yang L M, Shim V P W. A visco-hyperelastic constitutive description of elastomeric foam[J]. International Journal of Impact Engineering, 2004, 30(8): 1099-1110.

[4] Kirkinis E, Ogden R W, Haughton D M. Some solutions for a compressible isotropic elastic material[J]. Math Physics, 2004, 55(1): 136-158.

[5] Liang G K. Neural network based constitutive model for elastomeric foams[J]. Engineering Structures, 2008, 30(7): 2002-2010.

[6] Guo R, Shi H J. Failure analysis of the multi-layer cylindrical structure pre-stressed contact load[J]. Engineering Mechanics, 2003, 20(4): 192-198. (in Chinese) 郭然, 施惠基. 多层圆柱结构接触预紧力失效分析[J]. 工程力学, 2003, 20(4): 192-198.

[7] Zhao Z D, Lei Y C. Optimum design for determining rubber bushing stiffness of automobile suspensions[J]. Mechanical Science and Technology for Aerospace Engineering, 2006, 25(2): 168-170. (in Chinese) 赵振东, 雷雨成. 汽车悬架橡胶衬套刚度的优化设计[J]. 机械科学与技术, 2006, 25(2):168-170.

[8] Fan C Y, Zhuang Z, Huang K Z. The theoretical and finite element solutions of an interference problem of hyperelastic material[J]. Engineering Mechanics, 2003, 20(4): 15-18. (in Chinese) 范成业, 庄茁, 黄克智. 超弹性材料过盈配合的解析解和数值解[J]. 工程力学, 2003, 20(4): 15-18.

[9] Dai H H, Peng X. Weakly nonlinear long waves in a prestretched Blatz-Ko cylinder: Solitary, kink and periodic waves[J]. Wave Motion, 2011, 48(8): 761-772.

[10] Zou Y, Zhuang Z, Huang K Z. The solutions of axiymmetric plane stress for a hyperelastic material interference problem[J]. Engineering Mechanics, 2004, 21(6): 72-75. (in Chinese) 邹雨, 庄茁, 黄克智. 超弹性材料过盈配合的轴对称平面应力解答[J]. 工程力学, 2004, 21(6): 72-75.

[11] Li Y Y, Huang X Q. Constitutive relation for metal-rubber with different density and shape factor[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1084-1090. (in Chinese) 李宇燕, 黄协清. 密度和形状因子变化时金属橡胶材料的本构关系[J]. 航空学报, 2008, 29(4): 1084-1090.

[12] Guo B T, Zhu Z G, Cui R F, et al. Theoretical model of metal-rubber[J]. Journal of Aerospace Power, 2004, 19(3): 314-319. (in Chinese) 郭宝亭, 朱梓根, 崔荣繁, 等. 金属橡胶材料的理论模型研究[J]. 航空动力学报, 2004,19(3): 314-319.

[13] Kakavas P A, Giannopoulos G I, Vassilopoulos A P, et al. Prediction of the twisting moment and axial force in a circular rubber cylinder for combined extension and torsion based on the logarithmic strain approach[J]. Journal of Applied Polymer Science, 2008, 110(2): 1028-1033.

[14] Li B, Li Y Z, Hu B H, et al. A new interfacial element and finite element model for composite laminate[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1370-1378. (in Chinese) 李彪, 李亚智, 胡博海, 等. 一种层压复合材料组合界面单元及有限元模型[J]. 航空学报, 2013, 34(6): 1370-1378.

[15] Ren X C, Yao Z H. A new rubber-cord composite model and the corresponding parameter identification[J]. Engineering Mechanics, 2006, 23(12): 180-187. (in Chinese) 任旭春, 姚振汉. 一种新的橡胶-帘线复合材料的模型及其参数识别方案[J]. 工程力学, 2006, 23(12): 180-187.

文章导航

/