基于极大似然估计器的GNSS矢量跟踪算法
收稿日期: 2013-11-11
修回日期: 2014-03-21
网络出版日期: 2014-03-28
基金资助
国家自然科学基金(61201120);国家“863”计划(2010AA7010213)
GNSS Vector Tracking Algorithm Based on Maximum Likelihood Estimator
Received date: 2013-11-11
Revised date: 2014-03-21
Online published: 2014-03-28
Supported by
National Natural Science Foundation of China (61201120); National High-tech Research and Development Program of China (2010AA7010213)
矢量跟踪是一种将全球导航卫星系统(GNSS)接收机的信号跟踪与导航解算融为一体的跟踪算法。传统的基于矢量延迟/频率锁定环(VDFLL)的跟踪算法普遍采用延迟锁定环(DLL)和锁频环(FLL)鉴别器计算伪距和伪距率偏差观测量,由于锁频环鉴别器存在近似误差和一步延迟效应,在高动态环境下容易造成环路失锁。从直接估计卫星信号特征参数的角度出发,基于中频信号模型构建码相位和载波多普勒的极大似然代价函数,采用非迭代估计算法得到各通道码相位和多普勒频移的估计偏差,转换为卡尔曼滤波器的观测矢量,提出一种基于极大似然估计器(MLE)的矢量跟踪算法。理论分析和仿真结果表明:新算法结合了极大似然估计和矢量跟踪的优点,克服了FLL的延迟效应,与基于VDFLL的矢量环路相比,高动态环境下的跟踪稳定性更好,可以对被遮挡的卫星保持持续的跟踪。
程俊仁 , 刘光斌 , 张倩 , 范志良 . 基于极大似然估计器的GNSS矢量跟踪算法[J]. 航空学报, 2014 , 35(9) : 2559 -2567 . DOI: 10.7527/S1000-6893.2014.0027
Vector tracking is an advanced algorithm combining the signal tracking with the navigation of global navigation satellite system (GNSS) receivers. Traditional vector delay/frequency lock loop (VDFLL) generally loses of lock under high dynamic conditions because the pseudo-range and range-rate are always calculated by the delay lock loop (DLL) and frequency lock loop (FLL) discriminators, which may cause an approximation error and a one-step delay effort. Therefore, from the point of view of estimating the signal parameters directly, this paper proposes a vector tracking algorithm based on maximum likelihood estimator (MLE). This algorithm constructs the cost function of code delay and Doppler shift based on incoming signals firstly, and then calculates and converts the estimation errors to measurements by the noniterative filter method. Finally, all the measurements are input to a Kalman filter to complete the vector tracking. Theoretical analysis and simulation results show that compared to the traditional VDFLL, the new algorithm takes both advantages of the MLE and vector tracking, overcomes the delay efforts of FLL and performs a more robust tracking during the periods of signal blockage under high dynamic conditions.
[1] Parkinson B W, Spilker J J, Jr, Axelrad P, et al. Global positioning system: theory and applications, Volume I[M][R]. Reston: AIAA, 1996: 719-721.
[2] Kaplan E D, Hegarty C J. Understanding GPS: principles and applications[M]. 2nd ed. Norwood: Artech House, Inc., 2006: 243-247.
[3] Lin T, Abdizadeh M, Broumandan A, et al. Interference suppression for high precision navigation using vector-based GNSS software receivers[C]//Proceedings of ION GNSS 2011, 2011: 372-383.
[4] Jafarnia-Jahromi A, Lin T, Broumandan A, et al. Detection and mitigation of spoofing attacks on a vector-based tracking GPS receiver[C]//Proceedings of ION ITM 2012, 2012: 790-800.
[5] Kim K H, Jee G I, Song J H. The vector tracking loop design based on the extended Kalman filter[C]//Proceedings of the International Symposium on GPS/GNSS, 2008.
[6] Kim K H, Song J H, Jee G I. The GPS vector tracking loop based on the iterated unscented Kalman filter under the large initial error[C]//European Control Conference, 2009: 1-10.
[7] Lashley M, Bevly D M, Hung J Y. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 661-673.
[8] Lashley M. Modeling and performance analysis of GPS vector tracking algorithms[D]. Auburn: Auburn University, 2009.
[9] Liu J, Cui X W, Chen Q, et al. Joint vector tracking loop in a GNSS receiver[C]//Proceedings of ION ITM 2011, 2011: 1025-1032.
[10] Liu J, Cui X W, Lu M Q, et al. A vector tracking loop based on ML estimation in dynamic weak signal environments[C]//Proceedings of the 3rd China Satellite Navigation Conference, 2012: 629-643.
[11] Han S, Wang W J, Chen X, et al. Quasi-open-loop structure for high dynamic carrier tracking based on UKF[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2393-2399. (in Chinese) 韩帅, 王文静, 陈曦, 等. 基于UKF准开环结构的高动态载波跟踪环路[J]. 航空学报, 2010, 31(12): 2393-2399.
[12] Zhang X D. Modern signal processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2002: 49-54. (in Chinese) 张贤达. 现代信号处理[M]. 第2版. 北京: 清华大学出版社, 2002: 49-54.
[13] Won J H, Pany T, Eissfeller B. Design of a unified MLE tracking for GPS/Galileo software receivers[C]//Proceedings of ION GNSS 2006, 2006: 2396-2406.
[14] Won J H, Pany T, Eissfeller B. Noniterative filter-based maximum likelihood estimators for GNSS signal tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1100-1114.
[15] Won J H, Pany T, Eissfeller B. Characteristics of Kalman filters for GNSS signal tracking loop[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3671-3681.
[16] Lashley M, Bevly D M. Comparison of adaptive estimation techniques for vector delay/frequency tracking, AIAA-2008-7474[R]. Reston: AIAA, 2008.
[17] Zhao S H, Lu M Q, Feng Z M. GNSS vector lock loop based on adaptive Kalman filter[J]. Journal of Harbin Institute of Technology, 2012, 44(7): 139-143. (in Chinese) 赵思浩, 陆明泉, 冯振明. 基于自适应卡尔曼滤波的GNSS矢量锁定环路[J]. 哈尔滨工业大学学报, 2012, 44(7): 139-143.
[18] Zhao L, Ding J C, Sun M, et al. Bit synchronization and carrier tracking for very weak GPS signals[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1204-1212. (in Chinese) 赵琳, 丁继成, 孙明, 等. 极弱信号环境下GPS位同步和载波跟踪技术[J]. 航空学报, 2010, 31(6): 1204-1212.
[19] Li L M, Gong W B, Liu H J, et al. A carrier tracking algorithm based on adaptive extended Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1319-1328. (in Chinese) 李理敏, 龚文斌, 刘会杰, 等. 基于自适应扩展卡尔曼滤波的载波跟踪算法[J]. 航空学报, 2012, 33(7): 1319-1328.
[20] Qi W, Chang Q, Zhang Q S, et al. Arithmetic of Doppler simulation in high dynamic signal simulator[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1252-1257. (in Chinese) 齐巍, 常青, 张其善, 等. 高动态信号模拟器中的多普勒模拟算法[J]. 航空学报, 2008, 29(5): 1252-1257.
/
〈 | 〉 |