基于路径约束分析的跳跃式再入轨迹优化
收稿日期: 2013-07-08
修回日期: 2014-03-19
网络出版日期: 2014-03-24
基金资助
国家自然科学基金(11372345);国家“973”计划(2013CB733100)
Skip Reentry Trajectory Optimization Based on Analysis of Path Constraints
Received date: 2013-07-08
Revised date: 2014-03-19
Online published: 2014-03-24
Supported by
National Natural Science Foundation of China (11372345); National Basic Research Program of China (2013CB733100)
对于跳跃式再入轨迹优化问题,通常的求解方法是不经任何分析直接约束动压、过载和热流密度,再加上控制变量滚转角的约束,往往使问题变得复杂而难以求解。基于跳跃式再入轨迹的动力学特性,将轨迹进行分段,并逐段分析路径约束的特点和内在联系,建立起它们之间的解析关系式,由此得到跳跃式再入轨迹优化问题中路径约束的串行施加策略。运用该策略可以在某些情况下减少路径约束的个数,降低优化问题的复杂度;选择优化方法时,为了兼顾全局最优性与高精度结果,采用基于粒子群优化(PSO)算法和高斯伪谱法(GPM)的两层优化策略。仿真结果表明,采用两层优化策略可以得到满足约束的高精度解,路径约束串行施加策略正确可行,优化计算结果与理论分析结论一致。
杜昕 , 李海阳 , 沈红新 . 基于路径约束分析的跳跃式再入轨迹优化[J]. 航空学报, 2014 , 35(5) : 1265 -1275 . DOI: 10.7527/S1000-6893.2014.0025
For skip reentry trajectory optimization problem, path constraints (dynamic pressure, overload and heating rate) are often enforced without analysis. Besides, roll angle also needs to be constrained. These make the optimization problem very different to solve. Based on the dynamic feature, skip reentry trajectory is divided into several phases. Characteristic of path constraints and their relationship between each other in each phase are analyzed. Analytic relations of path constraints are formulated. Then, a pipelining enforcement strategy is proposed, which may reduce the number of path constraints. Considering both the global optimality and high-accuracy of solution, a two-step optimization approach based on particle swarm optimization (PSO) algorithm and Gauss pseudospectral method (GPM) is proposed. The results indicate that the proposed optimization approach can obtain high-accuracy optimal solutions which satisfy the constraints, and the proposed pipelining enforcement strategy of path constraints is valid, numerical optimization results accord with theory analytical results.
[1] Michael T, Timothy C, Jeremy R. Numerical skip entry guidance//Proceedings of the 29th Annual AAS Guidance and Control Conference, 2006.
[2] Bairstow S H. Reentry guidance with extended range capability for low L/D spacecraft. Massachusetts: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2006.
[3] Vinh N X. Optimal trajectories in atmospheric flight[M]. New York: Elsevier, 1981: 190-213.
[4] Vasile I. Optimal skip entry with terminal maximum velocity and heat constraint//Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, 1998.
[5] Vasile I. Optimal profound entry into atmosphere with minimum heat and constraints//Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2001.
[6] Zhou H, Zhou T, Chen W C, et al. Trajectory optimization in injection phase for hypersonic gliding vehicle[J]. Journal of Astronautics, 2006, 27(5): 44-49. (in Chinese) 周浩, 周韬, 陈万春, 等. 高超声速滑翔飞行器引入段弹道优化[J]. 宇航学报, 2006, 27(5): 44-49.
[7] Wang Y, Lu Y P, Zhang C F. Skip-entry trajectory optimization design for lunar return vehicle with trim-flaps[J]. Journal of Astronautics, 2011, 32(2): 284-289. (in Chinese) 王银, 陆宇平, 张崇峰. 带配平翼月球返回舱跳跃再入轨迹优化设计[J]. 宇航学报, 2011, 32(2): 284-289.
[8] Peng H J, Gao Q, Wu Z G, et al. Symplectic approaches for solving two-point boundary-value problems[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 653-658.
[9] Hwang I, Li J H, Du D. Differential transformation and its application to nonlinear optimal control[J]. Journal of Dynamic Systems, Measurement, and Control, 2009, 131(5): 0510101-05101010.
[10] John T B. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 653-658.
[11] Tong K W, Zhou J P, He L S. Legendre-Gauss pseudospectral method for solving optimal control problem[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1531-1537. (in Chinese) 童科伟, 周建平, 何麟书. Legendre-Gauss 拟谱法求解最优控制问题[J]. 航空学报, 2008, 29(6): 1531-1537.
[12] Fahroo F, Doman D B, Ngo A D. Modeling issues in footprint generation for reusable launch vehicles//Proceedings of the 2003 IEEE Aerospace Conference, 2005.
[13] Fahroo F, Doman D B. A direct method for approach and landing trajectory reshaping with failure effect estimation//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.
[14] Bollino K, Ross I M, Doman D B. Six-degrees-of-freedom trajectory optimization for reusable launch vehicle footprint determination//Proceedings of AAS/AIAA Astrodynamics Specialists Conference, 2007.
[15] Yong E M, Chen L, Tang G J. Trajectory optimization of hypersonic gliding reentry vehicle based on the physical programming[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1091-1097. (in Chinese) 雍恩米, 陈磊, 唐国金. 基于物理规划的高超声速飞行器滑翔式再入轨迹优化[J]. 航空学报, 2008, 29(5): 1091-1097.
[16] Li J F, Chen W C. Numerical solution of optimal trajectory for hypersonic vehicle with constraints[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1605-1611. (in Chinese) 李佳峰, 陈万春. 带约束的高超声速飞行器最优弹道的数值算法[J]. 航空学报, 2009, 30(9): 1605-1611.
[17] Stephen A W, Daniel W B, Benjamin M A, et al. Direct-entry, aerobraking and lifting aerocapture for human-rated lunar return vehicles//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
[18] Min X L, Pan T, Guo H L. Reentry trajectory optimization for manned deep space exploration[J]. Chinese Space Science and Technology, 2009(4): 8-12. (in Chinese) 闵学龙, 潘腾, 郭海林. 载人航天器深空飞行返回再入轨迹优化[J]. 中国空间科学技术, 2009(4): 8-12.
[19] Lu P, Xue S B. Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 756-767.
[20] Christopher W B. Skip entry trajectory planning and guidance. Iowa: College of Engineering, Iowa State University, 2008.
/
〈 | 〉 |