TA15钛合金环件径轴向辗轧成形全过程组织演变模拟
收稿日期: 2014-01-02
修回日期: 2014-03-10
网络出版日期: 2014-03-18
基金资助
国家自然科学基金(51175427, 51135007);金属挤压与锻造装备技术国家重点实验室(中国重型机械研究院有限公司)开放基金(2011MEFETKF_03);重庆理工大学汽车零部件先进制造技术教育部重点实验室2013年度开放基金; 国家科技重大专项(2010ZX04004-131-07); 华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(P2014-05); 高等学校学科创新引智计划(B08040)
Simulation of Microstructure Evolution During the Whole Process of Radial-axial Rolling of TA15 Titanium Alloy Ring
Received date: 2014-01-02
Revised date: 2014-03-10
Online published: 2014-03-18
Supported by
National Natural Science Foundation of China (51175427, 51135007); Fund of the State Key Laboratory of Metal Extrusion and Forging Equipment Technology (China National Heavy Machinery Research Institute Co.,Ltd.) (2011MEFETKF_03); Open Fund of the Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology; National Science and Technology Major Project (2010ZX04004-131-07); Open Fund of the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2014-05); 111 Project (B08040)
钛合金环件径轴向辗轧成形制造全过程通常包含加热环坯转移、辗轧成形及轧制环件冷却3个阶段,而每个阶段都将对最终环件的微观组织产生重要影响.因此,研究阐明钛合金材料在该成形制造全过程的微观组织演变特征与规律,对控制环件最终的组织和性能至关重要.以TA15钛合金环件径轴向辗轧为研究对象,首先阐明了TA15钛合金在上述各阶段的微观组织演变机制与演变模型,进而基于ABAQUS软件平台,建立了TA15钛合金环件径轴向辗轧成形制造全过程的宏微观耦合有限元(FE)模型.通过大量模拟研究表明:加热环坯转移阶段促使初生α相的体积分数增加,晶粒尺寸略微增大;辗轧成形阶段一定程度上细化了初生α相晶粒尺寸,而对初生α相体积分数影响不明显;轧制环件冷却阶段会使初生α相体积分数明显增加,晶粒尺寸增大.
朱帅 , 杨合 , 郭良刚 , 邸伟佳 , 凡玉 . TA15钛合金环件径轴向辗轧成形全过程组织演变模拟[J]. 航空学报, 2014 , 35(11) : 3145 -3155 . DOI: 10.7527/S1000-6893.2014.0018
The complete process of the radial-axial rolling of a titanium alloy ring usually includes three operations, namely, the transferring of the heated ring blank from the furnace to the ring rolling mill, the rolling of the heated ring blank, and the cooling of the rolled ring. Each operation can influence strongly the microstructure of the final ring. Therefore, it is important to reveal the characteristics and laws of microstructure evolution of the ring during the whole process of the radial-axial ring rolling for controlling the microstructure and quality of the final ring. Aiming at the whole process of radial-axial rolling of the TA15 titanium alloy ring, the mechanisms and models of microstructure evolution in each operation are clarified first. Then, under ABAQUS environment, a coupled macro-micro and through-process finite element (FE) model of radial-axial ring rolling of TA15 titanium alloy is developed. Extensive simulation results show that: the volume fraction of primary alpha shows an obvious increase but the grain size increases slightly in the transferring operation of the heated ring blank; the grain size of primary α is refined but the volume fraction does not exhibit obvious changes during the rolling operation of the heated ring blank; and both the volume fraction and grain size of primary α increase distinctly in the cooling operation of the rolled ring.
[1] Yang H, Wang M, Guo L G, et al. 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large rings[J]. Computational Materials Science, 2008, 44(2): 611-621.
[2] Liu D, Fu M J, Wan Z Y, et al. Rolling strategies in the rolling process of GH4169 alloy with rectangle cross-section ring[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1276-1280. (in Chinese) 刘东, 付明杰, 万自永, 等. GH4169合金矩形截面环轧制曲线的实验研究[J]. 航空学报, 2007, 28(5): 1276-1280.
[3] Sun Z C, Yang H, Ou X Z. Effects of process parameters on microstructural evolution during hot ring rolling of AISI 5140 steel[J]. Computational Materials Science, 2010, 49(1): 134-142.
[4] Qian D S, Pan Y. 3D coupled macro-microscopic finite element modelling and simulation for combined blank-forging and rolling process of alloy steel large ring[J]. Computational Materials Science, 2013, 70: 24-36.
[5] Guo L G, Pan X, Yang H, et al. Effects of rotational speed of driving roll on microstructure evolution during hot ring rolling of as-cast 42CrMo steel[J]. Heavy Machinery, 2012(3): 59-64. (in Chinese) 郭良刚, 潘霞, 杨合, 等. 驱动辊转速对铸态42CrMo钢环件热辗轧微观组织的影响规律[J]. 重型机械, 2012(3): 59-64.
[6] Zhang F, Li Y T, Qi H P, et al. Study on rule of microstructure evolution during hot ring rolling process of annular casting blank[J]. China Metal Forming Equipment & Manufacturing Technology, 2011(2): 96-99. (in Chinese) 张峰, 李永堂, 齐会萍, 等. 环形铸坯热辗扩成形微观组织演变规律研究[J]. 锻压装备与制造技术, 2011(2): 96-99.
[7] Wang M, Yang H, Zhang C, et al. Microstructure evolution modeling of titanium alloy large ring in hot ring rolling[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12): 1427-1437.
[8] Wang M, Yang H, Guo L G, et al. Simulation of microstructure evolution during hot ring rolling of large rings of titanium alloy based on 3D-FEM[J]. Journal of Plasticity Engineering, 2008, 15(6): 76-80. (in Chinese) 王敏, 杨合, 郭良刚, 等. 基于3D-FEM的大型钛环热辗扩成形微观组织演变仿真[J]. 塑性工程学报, 2008, 15(6): 76-80.
[9] Zhu S, Yang H, Guo L G, et al. Investigation of deformation degree and initial forming temperature dependences of microstructure in hot ring rolling of TA15 titanium alloy by multi-scale simulations[J]. Computational Materials Science, 2012, 65: 221-229.
[10] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2377-2386.
[11] Fan X G. Study on microstructure evolution during isothermal local loading forming of large-scale integral complex component of titanium alloys[D]. Xi'an: Northwestern Polytechnical University, 2012. (in Chinese) 樊晓光. 钛合金复杂大件等温局部加载成形组织演变研究[D]. 西安: 西北工业大学, 2012.
[12] Zhu S, Yang H, Guo L G, et al. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy[J]. Materials Characterization, 2012, 70: 101-110.
[13] Guo L G, Yang H, Jin J C. Design method of blank sizes for radial-axial ring rolling[J]. Chinese Journal of Mechanical Engineering, 2010, 46(24): 1-9. (in Chinese) 郭良刚, 杨合, 金坚诚. 环件径轴向轧制毛坯尺寸设计方法[J]. 机械工程学报, 2010, 46(24): 1-9.
[14] Wang M, Yang H, Sun Z C, et al. Analysis of mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM[J]. Journal of Materials Processing Technology, 2009, 209(7): 3384-3395.
[15] Guo L G, Yang H. Towards a steady forming condition for radial-axial ring rolling[J]. International Journal of Mechanical Sciences, 2011, 53(4): 286-299.
[16] Guo L G, Chen J H, Yang H, et al. Response rules of strain and temperature fields to roll sizes during hot rolling process of TC4 titanium alloy conical ring[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1463-1473. (in Chinese) 郭良刚, 陈建华, 杨合, 等. TC4钛合金锥形环热辗轧应变及温度场对轧辊尺寸的响应规律[J].航空学报, 2013, 34(6): 1463-1473.
/
〈 | 〉 |