结合吸附技术的对转压气机改型设计
收稿日期: 2013-12-12
修回日期: 2014-02-23
网络出版日期: 2014-03-05
基金资助
国家自然科学基金(51236006)
Redesign of Counter-rotating Compressor with Boundary Layer Suction
Received date: 2013-12-12
Revised date: 2014-02-23
Online published: 2014-03-05
Supported by
National Natural Science Foundation of China (51236006)
应用附面层抽吸技术和叶型优化设计方法对某双排对转轴流压气机进行了改型设计数值研究,旨在指导下一步的实验研究.近喘点时,原始出口导流叶片(OGV)尖部叶型存在着严重的气流分离现象.优化设计后,气流在叶型前缘加速平缓,通道内回流区所占比例明显降低,OGV 70%叶展以上的总压损失系数平均降低了38.4%,压气机等熵效率提高了0.3%.在转子2(R2)尖部叶型66%弦长轮缘端壁处开设1 mm宽抽吸槽,当近喘点的相对质量抽吸量为1%时,R2尖部的负荷水平改善明显,65%叶展以上等熵效率平均提高了10%.尖部流场的改善对于下游OGV产生了积极的效应,速度三角形的重构使轮缘端壁处的角区分离被限制在了很小的范围内,85%叶展以上的总压损失系数平均降低了25%.通过抽吸,压气机等熵效率又获得了0.5%的收益.
史磊 , 刘波 , 王雷 , 巫骁雄 , 曹志远 . 结合吸附技术的对转压气机改型设计[J]. 航空学报, 2014 , 35(12) : 3254 -3263 . DOI: 10.7527/S1000-6893.2013.05340
Boundary layer suction and blade optimization are employed in the redesign of a dual-stage counter-rotating compressor with numerical simulation. Further experimental research will be carried out according to the numerical results. At near stall point, there is serious flow separation at the tip region of the original outlet guide vane (OGV). Airfoil optimization makes smooth acceleration at the leading edge, and decreases the recirculation zone in the blade passage. Up to 70% spanwise of OGV, total pressure loss coefficient has a 38.4% drop in average. Isentropic efficiency of the compressor is improved by 0.3%. An axisymmetric suction slot located at 66% chordwise of Rotor 2 (R2) tip region with 1 mm width is designed at the shroud case. 1% comparative mass flow at near stall point can optimize the loading level of R2 tip region, bringing a 10% improvement in average on R2 isentropic efficiency in higher spanwise from 65%. These result in a positive effect on the flow condition of the OGV: corner separation is limited to a smaller region, total pressure loss coefficient has a 25% drop in average in the region up to 85% spanwise, and the isentropic efficiency of the compressor is further improved by 0.5%.
[1] Liu D X. Historic opportunities of aeropropulsion development[J]. Aeroengine, 2005, 31(2): 1-3.(in Chinese) 刘大响. 航空动力发展的历史性机遇[J]. 航空发动机, 2005, 31(2): 1-3.
[2] Car D, Puterbaugh S L, Bailie S T. Turbomachinery fluid mechanics and control, AFRL-RZ-WP-TR-2010-2026[R]. 2010.
[3] Zhou M, Li H H, Tang K P. Advances in flow control technology of boundary layer separation on the blade[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 298-304. (in Chinese) 周敏, 李航航, 唐侃平. 叶型附面层分离流动控制技术研究进展[J]. 航空工程进展, 2011, 2(3): 298-304.
[4] Reijnen D P. Experimental study of boundary layer suction in a transonic compressor[D]. Cambridge, MA: Massachusetts Institute of Technology, 1997.
[5] Kerrebrock J L, Drela M A, Merchant A A, et al. A family of designs for aspirated compressors, ASME Paper, 98-GT-196[R]. Washington, D.C.: ASME, 1998.
[6] Schuler B J, Kerrebrock J L, Merchant A A, et al. Design, analysis, fabrication and test of an aspirated fan stage, ASME Paper, 2000-GT-618[R]. Washington, D.C.: ASME, 2000.
[7] Merchant A A. Aerodynamic design and performance of aspirated airfoils, ASME Paper, 2002-GT-30369[R]. Washington, D. C.: ASME, 2002.
[8] Kerrebrock J L, Adamczyk J J, Shabbir A, et al. Design and test of an aspirated counter-rotating fan[J]. Journal of Turbomachinery, 2008, 130(2): 021004-1-021004-8.
[9] Gbadebo S A, Cumpsty N A, Hynes T P. Control of three-dimensional separations in axial compressor by tailored boundary layer suction[J]. Journal of Turbomachinery, 2008, 130(1): 011004-1-011004-8.
[10] Godard A, Fourmaux A, Burguburu S, et al. Design method of a subsonic aspirated cascade, ASME Paper, 2008-GT-50835[R]. Washington, D.C.: ASME, 2008.
[11] Godard A, Bario F, Burguburu S, et al. Experimental and numerical study of a subsonic aspirated cascade, ASME Paper, 2012-GT-69011[R]. Washington, D.C.: ASME, 2012.
[12] Liesner K, Meyer R, Gmelin C, et al. On the performance of boundary layer suction for secondary flow control in a high speed compressor[C]//43rd Fluid Dynamic Conference, 2013.
[13] Wang S T, Qiang X Q. Study of low-reaction boundary layer suction axial compressor and it's internal flow control[J]. Journal of Engineering Thermophysics, 2009, 30(1): 35-40. (in Chinese) 王松涛, 羌晓青. 低反动度附面层抽吸式压气机及其内部流动控制[J]. 工程热物理学报, 2009, 30(1): 35-40.
[14] Qiang X Q. Study of flow control and design methods in low-reaction boundary layer suction compressors[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese) 羌晓青. 低反动度附面层抽吸式压气机流动控制及设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[15] Nan X Y. The numerical and experimental study of the aspirated compressor blade[D]. Xi'an: Northwestern Polytechnical University, 2008. (in Chinese) 南向谊. 吸附式压气机叶片的流动机理探索及试验研究[D]. 西安: 西北工业大学, 2008.
[16] Huang J, Liu B, Cao Z Y, et al. Comparing different methods for simulating aspiration of counter-rotational compressor[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(8): 1301-1305. (in Chinese) 黄建, 刘波, 曹志远, 等. 吸附式对转压气机不同数值模拟方法的对比研究[J]. 机械科学与技术, 2012, 31(8): 1301-1305.
[17] Liu B, Cao Z Y, Wei W, et al. Effects of boundary layer suction on counter-rotating compressor in multistage environment[J]. Journal of Aerospace Power, 2013, 28(4): 885-892. (in Chinese) 刘波, 曹志远, 魏巍, 等. 级环境下附面层抽吸对对转压气机性能的影响[J]. 航空动力学报, 2013, 28(4): 885-892.
[18] Liu B, Cao Z Y, Shi L, et al. The application of non-axisymmetric endwall contouring and blade profile optimization in a counter-rotating compressor[C]//21st ISABE Conference, 2013.
[19] Gummer V, Goller M, Swoboda M. Numerical investigation of end wall boundary layer removal on highly loaded axial compressor blade rows[J]. Journal of Turbomachiner, 2008, 130(1): 011015-1-011015-9.
[20] Zhang H G, Chu W L, Wu Y H, et al. Investigation of the flow mechanisms of affecting compressor performance with axial skewed slots casing treatment[J]. Journal of Propulsion Technology, 2010, 31(5): 555-561. (in Chinese) 张皓光, 楚武利, 吴艳辉, 等. 轴向倾斜缝机匣处理影响压气机性能的机理[J]. 推进技术, 2010, 31(5): 555-561.
/
〈 | 〉 |