低速冲击下FMLs、铝板和复合材料的损伤对比
收稿日期: 2013-10-12
修回日期: 2014-02-10
网络出版日期: 2014-02-26
Comparison of Damage in FMLs, Aluminium and Composite Panels Subjected to Low-velocity Impact
Received date: 2013-10-12
Revised date: 2014-02-10
Online published: 2014-02-26
为提高飞机结构的损伤容限和抗冲击性能,欧洲成功研制了多种纤维金属层板(FMLs),并在具体机型结构上成功应用。对由玻璃纤维和2024-T3铝合金交替层压而成的FMLs进行落锤低速冲击试验,并与2024-T3铝合金板和准各向同性F300复合材料板进行了对比分析。FMLs完全穿透所需要的能量比2024-T3铝合金板和复合材料板分别高出约40%和6倍;在相同能量下,FMLs的背面裂纹长度比铝合金板短30%~50%。使用有限元法对FMLs动态冲击损伤过程进行了数值模拟,其中铝层采用延性损伤理论,纤维层采用Hashin失效准则,分析了层合板的动态冲击响应,总结了其损伤规律。数值结果与试验结果符合较好。
马玉娥 , 胡海威 , 熊晓枫 . 低速冲击下FMLs、铝板和复合材料的损伤对比[J]. 航空学报, 2014 , 35(7) : 1902 -1911 . DOI: 10.7527/S1000-6893.2013.0539
In order to improve the damage tolerance and anti-impact properties of aircraft structures, fiber metal laminates (FMLs) developed in Europe are successfully applied in commercial aircraft structures. In this paper, drop-weight low-velocity impact tests are performed on FMLs which consist of 2024-T3 aluminium alloy sheets bonded together by glass fiber prepreg. For comparison purposes, similar tests are conducted on monolithic 2024-T3 sheets and F300 quasi-isotropic composite panels. The penetration energy of the FMLs shows respectively about 40% and 6 times higher than that of the 2024-T3 sheets and composite panels; and the back side crack length of the FMLs is 30%-50% shorter than that in the 2024-T3 sheets at the same level of impact energy. Finite element models are developed to simulate the impact response of the FMLs. Ductile and Hashin damage initiation criteria are used to simulate the aluminium and fiber failure mechanisms respectively. The dynamic response of the laminates is analyzed and the damage mode is summarized. The simulation results agree well with the experimental findings.
[1] Schijve J. Development of fibre-mental laminates, arall and glare, new fatigue resistant materials, LR-715. Delft: Faculty of Aerospace Engineering, Delft University of Technology, 1993.
[2] Alaerliesten R C. Fatigue crack propagation and delamination growth in glare. Delft: Faculty of Aerospace Engineering, Delft University of Technology, 2005.
[3] Matthijs P. Crack closure in glare. Delft: Faculty of Aerospace Engineering, Delft University of Technology, 2005.
[4] Vlot A. Impact loading on fibre metal laminates[J]. International Journal of Impact Engineering, 1996, 18(3): 291-307.
[5] Vlot A, Krull M. Impact damage resistance of various fiber metal laminates//5th International Conference on Mechanical and Physical Behaviour of Materials Under Dynamic Loading, 1997: 1045-1050.
[6] Laliberte J F, Poon C, Straznicky P V, et al. Post-impact fatigue damage growth in fiber-metal laminates[J]. International Journal of Fatigue, 2002, 24(2-4): 249-256.
[7] Wu G, Yang J M, Thomas H H. The impact properties and damage tolerance and of bi-directionally reinforced fiber metal laminates[J]. Journal of Materials Science, 2007, 42(3): 948-957.
[8] Lawcock G D, Ye L, Mai Y W. Effects of fibre/matrix adhesion on carbon-fibre-reinforced mental laminates-Ⅱ, impact behaviour[J]. Composites Science and Technology, 1997, 57(12): 1621-1628.
[9] Caprino G, Spatarob G, DelLuongoa S. Low-velocity impact behavior of fiberglass-aluminum laminates[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(5): 605-616.
[10] Caprino G, Lopresto V, Iaccarino P. A simple mechanistic model to predict the macroscopic response of fiberglass-aluminum laminates under low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 290-300.
[11] Fan J Y, Guan Z W, Cantwell W J. Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading[J]. Composite Structures, 2011, 93(9): 2430-2436.
[12] Hayato N, Tatsuro K, Katsuhiko O. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 772-781.
[13] Sadighi M, Parnanen T, Alderliesten R C. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates[J]. Applied Composite Materials, 2012, 19(3-4): 545-559.
[14] Wu X R, Guo Y J. Development of methodology for predicting fatigue life of fiber reinforced mental laminates[J]. Advances in Mechanics, 1999, 29(3): 304-316. (in Chinese) 吴学仁, 郭亚军. 纤维金属层板疲劳寿命预测的研究进展[J]. 力学进展, 1999, 29(3): 304-316.
[15] Liao J, Cao Z Q, Dai Y. The off-axis properties of glare plates[J]. Journal of Plasticity Engineering, 2007, 14(5): 67-70. (in Chinese) 廖建, 曹增强, 代瑛. GLARE层板偏轴拉伸性能[J]. 塑性工程学报, 2007, 14(5): 67-70.
[16] Zheng C L, Zhu G Z, Liu W B. Investigation into the tension properties of carbon fiber reinforced magnesium alloy laminates[J]. Journal of Materials Engineering, 2007(S1): 148-150. (in Chinese) 郑长良, 朱公志, 刘文博. 碳纤维增强镁合金层合板及其基本力学性能[J]. 材料工程, 2007(S1): 148-150.
[17] Fan Y, Liu W B, Wang R. Preparation and properties research of AI/CF/TDE85 laminate//15th National Conference on Composite Materials Academic. Harbin: Institute of Composite Material and Structure, Harbin Industrial University, 2008: 691-694. (in Chinese) 樊玉, 刘文博, 王荣. AI/CF/TDE85复合层合板的制备及性能研究//第十五届全国复合材料学术会议论文集. 哈尔滨: 哈尔滨工业大学复合材料与结构研究所, 2008: 691-694.
[18] Cheng Y F, Li Y L, Liu J, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1781-1787. (in Chinese) 陈园方, 李玉龙, 刘军, 等.典型前缘结构抗鸟撞性能改进研究[J]. 航空学报, 2010, 31(9): 1781-1787.
[19] ASTM Committee. ASTM D 7136/D 7136M-05 Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event[S]. United States: ASTM International, 2005: 1-16.
[20] Hoopura H, Gese H, Dell H, et al. A comprehensive failure model for crashworthiness simulation of aluminium extrusions[J]. International Journal of Crashworthiness, 2004, 9(5): 449-464.
[21] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-782.
[22] Hashin Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
/
〈 | 〉 |