固体力学与飞行器总体设计

利于冬季飞行的太阳能飞机构型研究

  • 马东立 ,
  • 包文卓 ,
  • 乔宇航
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
马东立男,博士,教授。主要研究方向:飞行器总体设计、飞行力学、隐身技术研究。Tel:010-82338635 E-mail:madongli@buaa.edu.cn包文卓男,硕士研究生。主要研究方向:飞行器总体设计。Tel:010-82338635 E-mail:baowenzhuo@sina.com;乔宇航男,博士研究生。主要研究方向:飞行器总体设计。Tel:010-82338635 E-mail:qyuhangxp@hotmail.com

收稿日期: 2013-09-09

  修回日期: 2014-01-22

  网络出版日期: 2014-02-26

基金资助

国家“863”计划(2012AA7052002)

Study of Solar-powered Aircraft Configuration Beneficial to Winter Flight

  • MA Dongli ,
  • BAO Wenzhuo ,
  • QIAO Yuhang
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2013-09-09

  Revised date: 2014-01-22

  Online published: 2014-02-26

Supported by

National High-tech Research and Development Program of China(2012AA7052202)

摘要

针对冬季太阳辐射强度较弱的问题,提出并研究了一种新型太阳能飞机构型。概述了太阳能飞机的总体构型,建立了太阳辐射和能源动力系统模型,对飞机的气动、能量、质量及机翼最优偏转角等特性进行了分析,给出了适用于该构型太阳能飞机的总体参数设计方法,并对构型设计参数进行了研究。结果表明:机翼偏转角的存在可有效提高太阳能飞机所接收的太阳辐射能量。综合考虑太阳辐射能量和推进系统质量,机翼最优偏转角在7.4°~9.5°之间,其随时刻变化;端板最优展弦比为5左右,端板与机翼的最优面积比为0.09,端板最大许用升力系数的最优值为1.1。新构型太阳能飞机总面积比常规构型减小44.2%,其优势明显。

本文引用格式

马东立 , 包文卓 , 乔宇航 . 利于冬季飞行的太阳能飞机构型研究[J]. 航空学报, 2014 , 35(6) : 1581 -1591 . DOI: 10.7527/S1000-6893.2013.0529

Abstract

To address the problem of weak solar radiation intensity in winter, a new solar-powered aircraft configuration is put forward and studied. The general solar-powered aircraft configuration is summarized. The models of solar radiation intensity and energy power system are built. Aircraft characteristics of aerodynamic, power, weight, and optimal wing's deflection angle are analyzed, and a general-parameters design method for the new solar-powered aircraft configuration is introduced which is used to study the design parameters of the aircraft configuration. The results show that the existence of the wing's deflection angle can effectively improve the solar radiation intensity that the aircraft receives. The optimal wing's deflection angle is between 7.4°and 9.5°, changing by time. The optimal aspect ratio of the end-plates is around 5. The optimal area ratio of the end-plates to wing is 0.09. The optimal maximum allowable lift coefficient of the end-plates is 1.1. The new configuration solar-powered aircraft can decrease the total area by 44.2% as compared with the normal solar-powered aircraft configuration, which shows its obvious superiority.

参考文献

[1] Noth A. Design of solar powered airplanes for continuous flight. Suisse: Ecole Polytechnique Fédérale de Lausanne, 2008.

[2] Hall D W, Fortenbach C D, Dimiceli E V, et al. A preliminary study of solar powered aircraft and associated power trains, NASA CR-3699. Washington D.C.: NASA, 1983.

[3] Brandt S A, Gilliamt F T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4): 703-709.

[4] Sachs1 G, Lenz J, Holzapfel F. Unlimited endurance performance of solar uavs with minimal or zero electric energy storage, AIAA-2009-6013. Reston: AIAA, 2009.

[5] Giulio R, Giacomo F, Enrico C, et al. HELIPLAT: design, aerodynamic, structural analysis of long-endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6): 1505-1520.

[6] Yin C Y, Gao P Y, Guo J, et al. Mechanical performance analysis on wing's of Zephyr7 UAV[J]. Structure & Environment Engineering, 2012, 39(3): 19-25.(in Chinese) 尹成越, 高普云, 郭健, 等. "微风"(Zephyr7)无人机机翼力学性能分析[J]. 强度与环境, 2012, 39(3): 19-25.

[7] Noll T E, Brown J M, Perez-Davis M E, et al. Investigation of the Helios prototype aircraft mishap. Hampton VA: Langley Research Center, 2004.

[8] Engblom W A. Novel approach to high-altitude long-endurance stationkeeping, AIAA-2012-3203. Reston: AIAA, 2012.

[9] Chang M, Zhou Z, Cheng K. Exploring the characteristics of power density of tracking PV modules for high-altitude stationary solar-powered airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 273-281. (in Chinese) 昌敏, 周洲, 成柯. 高空驻留太阳能飞机主动式光伏组件面功率特性研究[J]. 航空学报, 2013, 34(2): 273-281.

[10] Klesh A T, Kabamba P T. Energy-optimal path planning for solar-powered aircraft in level flight, AIAA-2007-6655. Reston: AIAA, 2007.

[11] Spangelo S C, Gilberty E G, Klesh A T, et al. Periodic energy-optimal path planning for solar-powered aircraft, AIAA-2009-6016. Reston: AIAA, 2009.

[12] Jiang Y Q. Aircraft winglet design[M]. Beijing: Aviation Industry Press, 2009: 44-48. (in Chinese) 江永泉. 飞机翼梢小翼设计[M]. 北京: 航空工业出版社, 2009: 44-48.

[13] Shen H, Zeng Z Q. Solar photovoltaic technology[M]. Beijing: Chemistry Industry Press, 2005: 6-8. (in Chinese) 沈辉, 曾祖勤. 太阳能光伏发电技术[M]. 北京: 化学工业出版社, 2005: 6-8.

[14] Mitlitsky F, Myers B, Weisberg A H. Regenerative fuel cell systems[J]. Energy & Fuels, 1998, 12(1): 56-71.

[15] Youngblood J W, Talay T A. Solar-powered airplane design for long-endurance, high-altitude flight, AIAA-1982-0811. Reston: AIAA, 1982.

文章导航

/