流体力学与飞行力学

基于当地流动结构的RANS/LES混合模型

  • 徐晶磊 ,
  • 高歌 ,
  • 杨焱
展开
  • 1. 北京航空航天大学 能源与动力工程学院 航空发动机气动热力 国家科技重点实验室, 北京 100191;
    2. 中国科学院力学研究所 高温气体动力学国家重点实验室, 北京 100190
徐晶磊 男, 博士, 讲师, 硕士生导师.主要研究方向: 湍流模型, 计算流体力学. Tel: 010-82317403 E-mail: xujl@buaa.edu.cn; 高歌 男, 教授, 博士生导师.主要研究方向: 湍流, 涡动力学, 旋涡动力装置, 真空能. Tel: 010-82317412 E-mail: gaoge45@gmail.com; 杨焱 男, 博士, 助理研究员.主要研究方向: 计算流体力学. Tel: 010-82543976 E-mail: yangy@ustc.edu

收稿日期: 2013-11-11

  修回日期: 2014-01-16

  网络出版日期: 2014-02-21

基金资助

国家自然科学基金 (11002014)

A RANS/LES Hybrid Model Based on Local Flow Structure

  • XU Jinglei ,
  • GAO Ge ,
  • YANG Yan
Expand
  • 1. National Key Laboratory of Science and Technology on Aero-Engines Aero-thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2013-11-11

  Revised date: 2014-01-16

  Online published: 2014-02-21

Supported by

National Natural Science Foundation of China (11002014)

摘要

针对传统雷诺平均Navier-Stokes/大涡模拟(RANS/LES)混合模型固有的RANS和LES区域衔接难题,借鉴Vreman提出的亚格子(SGS)模型,提取其中描述流动状态的判断函数,利用不可压缩槽道湍流标定模型系数,构造了一个新的RANS/LES混合模型.评估算例包括不可压缩槽道湍流、稳态超声速平板边界层、NACA4412翼型绕流和亚临界雷诺数圆柱绕流.该模型作为壁面模化LES,解决了传统RANS/LES方法中速度型偏离对数律(LLM)的缺陷,且拓宽了原Vreman模型在粗糙网格上的适用性,具有较高精度.该模型同时解决了模化应力折损问题,且对大尺度分离流动的模拟精度相较传统的RANS/LES混合模型如脱体涡模拟(DES)有进一步提升.

本文引用格式

徐晶磊 , 高歌 , 杨焱 . 基于当地流动结构的RANS/LES混合模型[J]. 航空学报, 2014 , 35(11) : 2992 -2999 . DOI: 10.7527/S1000-6893.2013.0522

Abstract

In order to overcome the inherent deficiency of the traditional Reynolds Averaged Navier-Stokes/large eddy simulation (RANS/LES) hybrid model, i.e., 'the bridging problem of RANS and LES', a discriminating function extracted from Vreman's subgrid-scale (SGS) model, which is used to describe flow regimes, is employed to formulate a new RANS/LES hybrid model. The model coefficients are calibrated by incompressible turbulent channel flows. The test cases include incompressible turbulent channel flows, stable-state supersonic boundary layers over a flat plate, flow past NACA4412 airfoil and flow past a circular cylinder at subcritical Reynolds numbers. This new model is not only able to solve the modeled-stress-depletion problem, but also greatly raises the accuracy when compared with the traditional RANS/LES hybrid approach, such as detached eddy simulation (DES) in predicting large-scale unsteadiness. Furthermore, the model can also solve the log-layer mismatch (LLM) problem when RANS/LES hybrid is employed as wall modeled LES, thus extending the ability of Vreman's LES model in dealing with coarse meshes. The accuracy is greatly improved.

参考文献

[1] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[M]//Liu C, Liu Z. Advances in DNS/LES. Columbus, Ohio: Greyden Press, 1997.

[2] Hamba F. A hybrid RANS/LES simulation of turbulent channel flow[J]. Theoretical and Computational Fluid Dynamics, 2003, 16(5): 387-403.

[3] Ding J C, Wu Z C, Ju S J. Study of delayed eddy simulation methods[C]//Proceeding of 18th Annual Meeting of Beijing Society of Theoretical and Applied Mechanics, 2012: 47-48. (in Chinese) 丁举春, 吴宗成, 鞠胜军. 分离涡模拟方法的研究[C]//北京力学会第18届学术年会论文集, 2012: 47-48.

[4] Sun M B, Wang H B, Liang J H, et al. Evaluation of hybrid RANS/LES methodologies for complex turbulent flow simulations[J]. Aeronautical Computing Technique, 2011, 41(1): 24-33. (in Chinese) 孙明波, 汪洪波, 梁剑寒, 等. 复杂湍流流动的混合RANS/LES方法研究[J]. 航空计算技术, 2011, 41(1): 24-33.

[5] Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.

[6] Song K, Qiao Z D. Delayed RANS/LES method for high attack angle flow over multi-element airfoil[J]. Aeronautical Computing Technique, 2009, 39(3): 42-55. (in Chinese) 宋科, 乔志德. 多段翼型大迎角分离流动的Delayed RANS/LES 混合算法[J]. 航空计算技术, 2009, 39(3): 42-55.

[7] Wang H B, Sun M B, Wu H Y, et al. Improved DES-like method for simulation of turbulent flows[J]. Journal of Aerospace Power, 2011, 26(10): 2167-2173. (in Chinese) 汪洪波, 孙明波, 吴海燕, 等. 一种改进的类DES湍流模拟方法[J]. 航空动力学报, 2011, 26(10): 2167-2173.

[8] Xiao Z X, Fu S. Studies of the unsteady supersonic base flows around three after bodies[J]. Acta Mechanica Sinica, 2009, 25(4): 471-479.

[9] Shi Y P, Xiao Z L, Chen S Y. Constrained subgrid-scale stress model for large eddy simulation[J]. Physics of Fluids, 2008, 20(1): 011701.

[10] Vreman A W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications[J]. Physics of Fluids, 2004, 16(10): 3670-3681.

[11] Moser R D, Kin J, Mansour N N. Direct numerical simulation of turbulent channel flow up to Re=590[J]. Physics of Fluids, 1999, 11(4): 943-945.

[12] Hoyas S, Jiménez J. Reynolds number effects on the Reynolds-stress budgets in turbulent channels[J]. Physics of Fluids, 2008, 20(10): 101511.

[13] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.

[14] Gao H, Fu D X, Ma Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7): 1709-1712.

[15] Menter F R, Kuntz M. Adaption of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]//McCallen R, Browand F, Ross J. The aerodynamics of heavy vehicles: trucks, busses and trains. Berlin: Springer Heidelberg, 2004: 339-352.

[16] Ma X, Karamanos G S, Karniadakis G E. Dynamics and low-dimensionality of a turbulence near wake[J]. Journal of Fluid Mechanics, 2000, 410: 29-65.

[17] Lourenco L M, Shih C. Characteristics of the plane turbulent near wake of a circular cylinder-A particle image velocimetry study. Private Communication[R]. 1993.

文章导航

/