基于改进层间剪切强度准则的层压板冲击分层阈值力预测
收稿日期: 2013-08-26
修回日期: 2014-01-06
网络出版日期: 2014-02-14
基金资助
国家自然科学基金(11372192);上海市自然科学基金(13ZR1422200);上海市科委重大项目科技攻关课题(12dz1100302)
Prediction of Delamination Threshold Load for Impact on Composite Laminate Based on Modified Interlaminar Shear Strength Criterion
Received date: 2013-08-26
Revised date: 2014-01-06
Online published: 2014-02-14
Supported by
National Natural Science Foundation of China (11372192);Natural Science Foundation of Shanghai (13ZR1422200); Scientific and Technological Research Project in Major Program Supported by Shanghai Committee of Science and Technology (12dz1100302)
薄板受冲击时产生的挠度会使接触半径大于直接由赫兹接触定律所得的接触半径。本文提出两种考虑薄板挠度的接触半径修正方法,首先使用赫兹接触定律初步计算接触半径,再联立层压板挠度公式和冲击头表面的几何方程得出修正的接触半径,用有限元模型验证了接触半径修正方法的有效性。使用基于层间剪切强度的分层阈值力(DTL)准则,提出了根据少量测试样本预测不同厚度层压板在不同半径冲击头作用下分层阈值力的方法。使用该方法预测了不同冲击参数下复合材料翼盒蒙皮的低速冲击分层阈值力。结果表明,使用了修正的接触半径后,预测精度有大幅的提高。
高尚君 , 于哲峰 , 汪海 . 基于改进层间剪切强度准则的层压板冲击分层阈值力预测[J]. 航空学报, 2014 , 35(5) : 1329 -1335 . DOI: 10.7527/S1000-6893.2013.0512
The contact radius of thin plates subjected to impacts with great deflection may be larger than that which is directly calculated with the Hertzian contact law. Two methods are proposed to calculate the contact radius with consideration of the deflection of a thin plate. The preliminary contact radius is calculated first based on the Hertzian contact law. The modified contact radius is then obtained by solving the simultaneous equations of a composite laminate's deflection and the geometry of the impactor. The modification of the contact radius is verified with finite element simulations. The modified contact radius is adopted to set up a new delamination threshold load (DTL) criterion based on the interlaminar shear strength. An approach of DTL prediction for the impact on composite laminates of different thicknesses by different tup diameters using a little test data is proposed based on this criterion. The proposed method is applied to predict the DTL of a low velocity impact on the skin of a composite wing box and it yields more accurate results.
[1] Yang N B, Zhang Y N. Composite structure design[M]. Beijing: Beihang University Press, 2003: 321-330. (in Chinese) 杨乃宾, 章怡宁. 复合材料结构设计[M]. 北京: 北京航空航天大学出版社, 2003: 321-330.
[2] Gu X J, Xu X W. Numerical simulation of damage in stiffened integral composite panels under high velocity impact [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 258-272. (in Chinese) 古兴瑾, 许希武. 复合材料整体化加筋壁板高速冲击损伤数值模拟[J]. 航空学报, 2012, 33(2): 258-272.
[3] Kumar P, Rai B. Impact damage on single interface GFRP laminates-an experimental study[J]. Composite Structures, 1991, 18(1): 1-10.
[4] Shen Z, Zhang Z L, Wang J. Characterization of damage resistance and damage tolerance behavior of composite laminates[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 140 -145. (in Chinese) 沈真, 张子龙, 王进. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004, 21(5): 140-145.
[5] Choi H Y, Chang F K. A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Journal of Composite Materials, 1992, 26(14): 2134-2169.
[6] Zhou G. Damage mechanisms in composite laminates impacted by a flat-ended impactor[J]. Composites Science and Technology, 1995, 54(3): 267-273.
[7] Yi P Y, Yu Z F, Wang H. Stiffness degradation methodology for low-velocity impact simulation in composite laminate[J]. Chinese Quarterly of Mechanics, 2012, 33(3): 469-475. (in Chinese) 伊鹏跃, 于哲峰, 汪海. 复合材料层压板低速冲击刚度退化仿真方案研究[J]. 力学季刊, 2012, 33(3): 469-475.
[8] Chen Y J, Yu Z F, Wang H. Numerical modeling of scale effects on the responses of laminated composite plate under low velocity impact[J]. Chinese Journal of Solid Mechanics, 2012, 33(6): 574-582. (in Chinese) 陈亚军, 于哲峰, 汪海. 复合材料层压板低速冲击响应比例效应数值模拟研究[J]. 固体力学学报, 2012, 33(6): 574-582.
[9] Davies G A O, Zhang X. Impact damage prediction in carbon composite structures[J]. International Journal of Impact Engineering, 1995, 16(1): 149-170.
[10] Sutherland L S, Soares C G. Contact indentation of marine composites[J]. Composite Structures, 2005, 70(3): 287-294.
[11] Yang F J, Cantwell W J. Impact damage initiation in composite materials[J]. Composites Science and Technology, 2010, 70(2): 336-342.
[12] Tan T M, Sun C T. Use of statical indentation laws in the impact analysis of laminated composite plates[J]. Journal of Applied Mechanics, 1985, 52(1): 6-12.
[13] Wu E, Shyu K. Response of composite laminates to contact loads and relationship to low-velocity impact[J]. Journal of Composite Materials, 1993, 27(15): 1443-1464.
[14] Cairns D S, Lagace P A. Thick composite plates subjected to lateral loading[J]. Journal of Applied Mechanics, 1987, 54(3): 611-616.
[15] Wu E, Yen C S. The contact behavior between laminated composite plates and rigid spheres[J]. Journal of Applied Mechanics, 1994, 61(1): 60-66.
[16] Chen P, Xiong J, Shen Z. Thickness effect on the contact behavior of a composite laminate indented by a rigid sphere[J]. Mechanics of Materials, 2008, 40(4): 183-194.
[17] Olsson R. Mass criterion for wave controlled impact response of composite plates[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(8): 879-887.
[18] Majeed M A, Ahmet S Y, Andreas P C. Elastoplastic contact/impact of rigidly supported composites[J]. Composites Part B: Engineering, 2012, 43(3): 1244-1251.
/
〈 |
|
〉 |