流体力学与飞行力学

基于浸入式边界法的振荡转子叶片数值模拟

  • 胡国暾 ,
  • 杜林 ,
  • 孙晓峰
展开
  • 北京航空航天大学 能源与动力工程学院, 北京 100191
胡国暾女,博士研究生。主要研究方向:气动弹性稳定性问题。Tel:010-82316337-81,E-mail:huguotun@126.com;孙晓峰男,博士,教授,博士生导师。主要研究方向:气动声学,气动弹性力学,流动稳定性。Tel:010-82317408,E-mail:sunxf@buaa.edu.cn

收稿日期: 2013-10-31

  修回日期: 2014-01-13

  网络出版日期: 2014-01-17

基金资助

国家自然科学基金(51076006)

An Immersed Boundary Method for Simulating Oscillating Rotor Blades

  • HU Guotun ,
  • DU Lin ,
  • SUN Xiaofeng
Expand
  • School of Jet Propulsion, Beihang University, Beijing 100191, China

Received date: 2013-10-31

  Revised date: 2014-01-13

  Online published: 2014-01-17

Supported by

National Natural Science Foundation of China (51076006)

摘要

对于流固耦合问题,传统的数值模拟方法由于需要不断的网格重构使得问题变得复杂,本文通过利用浸入式边界法建立了在单一坐标系和网格下求解振荡转子叶片的快速计算模型,从而避免了传统方法中由于需要不断地重构贴体网格造成的数值模拟的复杂性。为了验证该方法的正确性,分别对低KC (Keulegan-Carpenter)数下的振荡圆柱和两自由度振荡圆柱进行了数值模拟,计算结果与以往的试验结果和数值结果吻合得很好,证明了浸入式边界方法的可靠性。在此基础上,对振荡转子叶片进行了数值模拟。结果表明折合速度和叶栅稠度是影响振荡转子叶片的重要因素。并且,值得注意的是这种耦合过程并没有生成贴体网格,因此大大减小了计算时间,这样可以更加快速、准确地模拟真实的叶栅流动情况。

本文引用格式

胡国暾 , 杜林 , 孙晓峰 . 基于浸入式边界法的振荡转子叶片数值模拟[J]. 航空学报, 2014 , 35(8) : 2112 -2125 . DOI: 10.7527/S1000-6893.2013.0517

Abstract

The numerical simulation associated with fluid-structure interaction is very complicated for it requires repeated grid regeneration in the traditional method. In the present work, a fast explicit numerical method is established to solve the unsteady flow with oscillation of a rotor blade on the basis of an immersed boundary method. In order to validate the method, two simulation cases are carried out: an oscillating cylinder at low KC (Keulegan-Carpenter) number, and a two degrees of freedom oscillating cylinder, and the results agree well with previous research. Based on these benchmark cases, a numerical simulation for an oscillating airfoil is then established. It is found that the oscillation of rotor blades is influenced greatly by the reduced velocity and cascade solidity. It is worth noting that the coupling process is not necessary for generating any body-fitting grid, which makes it much faster to perform the computational process for such complicated fluid-structure interaction problems.

参考文献

[1] Ballhaus W F, Goorjina P M. Computation of unsteady transonic flows by the indicial method[J]. AIAA Journal, 1978, 16(2): 117-124.

[2] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.

[3] He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade[J]. Journal of Turbomachinery, 1994, 116(3): 469-476.

[4] Sadeghi M, Liu F. Computation of mistuning effects on cascade flutter[J]. AIAA Journal, 2001, 39(1): 22-28.

[5] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled methods[J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.

[6] Sadeghi M, Yang S, Liu F, et al. Parallel computation of wing flutter with a coupled Navier-Stokes/CSD method, AIAA-2003-1347. Reston: AIAA, 2003.

[7] Sadeghi M, Liu F. Investigation of mistuning effects on cascade flutter using a coupled method[J]. Journal of Propulsion and Power, 2007, 23(2): 266-272.

[8] Kazawa J, Watanabe T. Numerical analysis toward active control of cascade flutter with smart structure, AIAA-2002-4079. Reston: AIAA, 2002.

[9] Gottfried D A. Simulation of fluid-structure interaction in turbomachinery. West Lafayette: Purdue University, 2000.

[10] Hu P G, Xue L P, Mao S L, et al. Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems, AIAA-2010-1464. Reston: AIAA, 2010.

[11] Hu P G. Material point method with least squares technique for nonlinear aeroelasticity and fluid-structure interactions (FSI) in ASTE-P toolset, AIAA-2010-8224. Reston: AIAA, 2010.

[12] Peskin C S. Flow patterns around heart values: a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.

[13] Zhong G H, Sun X F. A simulation strategy for an oscillating cascade in the turbomachinery using immersed boundary method[J]. AIAA Journal of Propulsion and Power, 2009, 25(2): 312-321.

[14] Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external force field[J]. Journal of Computational Physics, 1993, 105(2): 354-366.

[15] Hu G T, Sun X F. A numerical modeling of the vortex-induced vibration of cascade in turbomachinery using immersed boundary method[J]. Journal of Thermal Science, 2011, 20: 229-237.

[16] Chima R V. Explicit multi-grid algorithm for quasi-three-dimensional viscous flows in turbomachinery[J]. Journal of Propulsion and Power, 1987, 3(5): 397-405.

[17] Armfield S, Street R. The fractional-step method for the Navier-Stokes equations on staggered grids: the accuracy of three variations[J]. Journal of Computational Physics, 1999, 153(2): 660-665.

[18] Dutsch H, Durst F, Becker S. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360: 249-271.

[19] Singh S P, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes[J]. Journal of Fluid and Structures, 2005, 20(8): 1085-1104.

[20] Piperno S. Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations[J]. International Journal for Numerical Methods in Fluids, 1997, 25(10): 1207-1226.

[21] Gnesin V I, Kolodyazhnaya L V, Rzadkowski R. A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades[J]. Journal of Fluids and Structures, 2004, 19 (8): 1141-1153.

[22] Denton J D. An improved time-marching method for turbomachinery flow calculation[J]. Journal for Engineering for Power, 1983, 105(3): 514-521.

文章导航

/