流体力学与飞行力学

高超声速二元进气道前体曲线激波逆向设计

  • 郭善广 ,
  • 王振国 ,
  • 赵玉新 ,
  • 范晓樯
展开
  • 国防科学技术大学 高超声速冲压发动机技术重点实验室, 湖南 长沙 410073
郭善广男,博士研究生。主要研究方向:高超声速推进技术。E-mail:410552457@163.com;王振国男,博士,教授,博士生导师。主要研究方向:推进系统燃烧理论与燃烧诊断技术、火箭及其组合推进技术、高超声速推进技术。E-mail:zgwang@nudt.edu.cn;赵玉新男,博士,副教授,硕士生导师。主要研究方向:高超声速空气动力学、实验流体力学。Tel:0731-84576449E-mail:zyx_nudt@163.com;范晓樯男,博士,副教授,硕士生导师。主要研究方向:高超声速空气动力学。E-mail:xiaoqiangfan@hotmail.com

收稿日期: 2013-06-25

  修回日期: 2014-01-06

  网络出版日期: 2014-01-17

基金资助

国家自然科学基金(11072264)

Inverse Design of the Fore-body Curved Shock Wave of the Hypersonic Planar Inlet

  • GUO Shanguang ,
  • WANG Zhenguo ,
  • ZHAO Yuxin ,
  • FAN Xiaoqiang
Expand
  • Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Received date: 2013-06-25

  Revised date: 2014-01-06

  Online published: 2014-01-17

Supported by

National Natural Science Foundation of China (11072264)

摘要

为实现高超声速二元进气道前体激波的压缩能力、压缩效率、流量捕获特性和结构长度可控,提出了平面曲线激波逆向设计方法。采用B-Spline曲线控制激波形状。利用有旋特征线法,求解激波的影响域及决定激波的壁面。设计了一凹激波,并对波后流场进行CFD无黏数值模拟,CFD结果和设计结果一致,验证了设计方法的可行性。此外,还设计了直激波、凹激波和凸激波3种激波,并对其在设计点和非设计点处的性能开展了数值研究。在设计点处,分析了激波的压缩比、激波的总压恢复系数、激波压缩区的压升、激波压缩区出口马赫数和流动角随激波控制角的变化规律。在非设计点处,分析了激波压缩区的流量系数和总压恢复系数随攻角和马赫数的变化规律。

本文引用格式

郭善广 , 王振国 , 赵玉新 , 范晓樯 . 高超声速二元进气道前体曲线激波逆向设计[J]. 航空学报, 2014 , 35(5) : 1246 -1256 . DOI: 10.7527/S1000-6893.2013.0510

Abstract

To achieve the compression capacity, compression efficiency, flow mass capture capacity, and geometric length of the hypersonic planar inlet controllable, a design method of the planar curved shock wave is proposed. The shock curve is specified with the B-Spline function in advance, and the domain of influence of the shock wave and the wall profile are solved by the rotational method of characteristics. With the inviscid CFD simulation of the concave shock wave, the present design method is validated. Three types of shock wave, including straight, concave and convex shock waves, are designed, and their performances are investigated. At on-design point, the variations of contraction ratio, total pressure recovery coefficient, pressure rise, and exit Mach number and flow angle with the governing angle of shock wave are illustrated. In addition, at off-design point, the variations of the total pressure recovery coefficient and flow mass coefficient with the angle of attack and Mach number are shown.

参考文献

[1] Oswatisch K. Pressure recovery in missiles with reaction propulsion at high supersonic speeds, NASA-TM-1140. Washington, D.C.: NASA, 1947.

[2] Mlder S, Spiro E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 2006, 3(8): 1303-1304.

[3] van Wie D M, Mlder S. Applications of Busemann inlet designs for flight at hypersonic speeds, AlAA-1992-1210. Reston: AIAA, 1992.

[4] Billig F S, Kothari A P. Streamline tracing: technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3): 465-471.

[5] O'Brien T F. Viscous-optimized length-constrained axisymmetric geometries for streamline-tracing, AIAA-2008-2511. Reston: AIAA, 2008.

[6] Nan X J, Zhang K Y, Jin Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523. (in Chinese) 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523.

[7] Li Y Z, Zhang K Y, Nan X J. Design of hypersonic inward turning inlets base on concept controllable Mach number distribution[J]. Journal of Aerospace Power, 2012, 27(11): 2484-2491. (in Chinese) 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11): 2484-2491.

[8] He X Z, Zhou Z, Ni H L. Integrated design method and performance analyses of osculating inward turning cone waverider forebody inlet[J]. Journal of Propulsion and Technology, 2012, 33(4): 510-515. (in Chinese) 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4): 510-515.

[9] He X Z, Ni H L. Osculating curved cone (OCC) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082. (in Chinese) 贺旭照, 倪鸿礼. 密切曲面锥乘波体-设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082.

[10] You Y C, Liang D W. Three-dimensional sections hypersonic inlet based on internal waverider[J]. Sci China Ser E-Tech Sci, 2009, 39(8): 1483-1494. (in Chinese) 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学 E辑: 技术科学, 2009, 39(8): 1483-1494.

[11] Xiao Y B, Yue L J, Gong P, et al. Investigation on a truncated streamline-traced hypersonic Busemann inlet, AIAA-2008-2634. Reston: AIAA, 2008.

[12] Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves//First International Waverider Symposium. College Park: University of Maryland, 1990: 17-19.

[13] Eggers T, Sobieczky H, Center K B. Design of advanced waveriders with high aerodynamic efficiency, AIAA-1993-5141. Reston: AIAA, 1993.

[14] Sobieczky H, Zores B, Wang Z, et al. High flow speed design using the theory of oculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1): 1-7.

[15] Zucrow M J, Hoffman J D. Gas dynamics[M]. New Yorks: John Wiley & Sons, Inc., 1976: 191-192.

[16] Zhu X X. Plastic arts of free curves and curved surfaces[M]. Beijing: Science Press, 2000: 118-121. (in Chinese) 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 118-121.

文章导航

/