电子与控制

基于析取关系直接变换的冲突解脱方法

  • 陈伟锋 ,
  • 邵之江
展开
  • 1. 浙江工业大学 信息工程学院, 浙江 杭州 310023;
    2. 浙江大学 工业控制技术国家重点实验室 工业控制研究所, 浙江 杭州 310027
陈伟锋男,博士,讲师。主要研究方向:飞行器轨迹优化与控制。Tel:0571-85290521 E-mail:wfchen@zjut.edu.cn;邵之江男,博士,教授,博士生导师。主要研究方向:复杂过程系统控制与优化。Tel:0571-87953068 E-mail:zjshao@iipc.zju.edu.cn

收稿日期: 2013-08-20

  修回日期: 2013-12-25

  网络出版日期: 2014-01-07

基金资助

国家自然科学基金(61203132)

Direct Disjunction Transcription Based Conflict Resolution Approach

  • CHEN Weifeng ,
  • SHAO Zhijiang
Expand
  • 1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
    2. Institute of Industrial Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China

Received date: 2013-08-20

  Revised date: 2013-12-25

  Online published: 2014-01-07

Supported by

National Natural Science Foundation of China (61203132)

摘要

针对自由飞行条件下的飞行冲突解脱问题,提出了一种基于析取关系直接变换的联立求解方法(DDTSA)。首先在不引入额外辅助变量的情况下,将基于析取关系的安全边界条件变换成易于联立求解的约束条件,使问题的变量和方程个数大幅度减少,从而降低问题的求解难度。然后为保证求解的精度和稳定性,采用基于Radau配置点的拉格朗日插值多项式对微分代数方程组进行离散化处理,继而求解离散化得到的非线性规划问题。最后分别对2架、3架以及4架飞机的冲突解脱问题进行仿真,仿真结果表明与相关文献中的方法相比,该方法具有更高的计算效率并且能够得到更优的结果。

本文引用格式

陈伟锋 , 邵之江 . 基于析取关系直接变换的冲突解脱方法[J]. 航空学报, 2014 , 35(4) : 1122 -1133 . DOI: 10.7527/S1000-6893.2013.0505

Abstract

For the conflict resolution under free flight conditions, a direct disjunction transcription based simultaneous approach (DDTSA) is put forward in this paper. First, the disjunction based safety boundary conditions are transformed directly into continuous constraints without introducing any additional auxiliary variables, which can be handled simultaneously with ease. The number of variables and the number of equations can be decreased remarkably and then the solution difficulty is reduced. In order to guarantee the solution precision and the solving stability, Radau collocation points based Lagrangian interpolation polynomial is utilized to discretize the group of differential algebraic equations, and then the generated nonlinear programming program is solved to obtain the optimal control profiles. Finally, two aircrafts, three aircrafts and four aircrafts conflict resolution problems are demonstrated. The simulation results show that the proposed method is able to solve these conflict resolution problems with higher efficiency than the approach presented in the related reference; furthermore, it can also yield a better objective value.

参考文献

[1] Han S C, Pei C G, Sui D, et al. Security analysis of area navigation parallel airway[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1023-1027. (in Chinese) 韩松臣, 裴成功, 隋东, 等. 平行区域导航航路安全性分析[J]. 航空学报, 2006, 27(6): 1023-1027.

[2] Hoekstra J M, Van G R, Ruigrok R C J. Designing for safety: the 'free flight' air traffic management concept[J]. Reliability Engineering and System Safety, 2002, 75(2): 215-232.

[3] Menon P K, Sweriduk G D, Sridhar B. Optimal strategies for free-flight air traffic conflict resolution[J]. AIAA Journal of Guidance, Control and Dynamics, 1999, 2(22): 202-211.

[4] Kuchar J K, Yang L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transaction on Intelligent Transportation Systems, 2000, 1(4): 179-189.

[5] Bilimoria K D. A geometric optimization approach to aircraft conflict resolution//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA: AIAA, 2000: 14-17.

[6] Dowek G, Munoz C, Geser A. Tactical conflict detection and resolution in a 3-D airspace. Inttitute for Computer Applications in Science and Engineering Hampton VA, 2001.

[7] Zhu C Y, Meng X. Geometric models of flight conflict resolution and recovery and control strategies[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2013, 37(2): 307-310. (in Chinese) 朱承元, 孟旭. 飞行冲突解脱与恢复几何模型及管制策略[J]. 武汉理工大学学报: 交通科学与工程版, 2013, 37(2): 307-310.

[8] Han Y X, Tang X M, Han S C. Conflict resolution model of optimal flight for fixation airway[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 115-120. (in Chinese) 韩云祥, 汤新民, 韩松臣. 固定航路最优飞行冲突解脱模型[J]. 交通运输工程学报, 2012, 12(1): 115-120.

[9] Ingalls B. Conflict resolution in air traffic management using the methods of optimal control theory. Halifax: Dalhousie University, 1997.

[10] Bicchi A, Pallottino L. On optimal cooperative conflict resolution for air traffic management systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4): 221-232.

[11] Wang J N, Yuan Z J. Study on resolution of flight conflicts based on particle swarm optimization[J]. Journal of Civil Aviation University of China, 2010, 28(4): 1-4. (in Chinese) 王洁宁, 袁志娟. 基于粒子群算法的飞行冲突解脱问题[J]. 中国民航大学学报, 2010, 28(4): 1-4.

[12] Cui L W, Shi W R, Liu X M, et al. Air conflict resolution based on genetic algorithm and particle swarm optimization[J]. Computer Engineering and Applications, 2013, 49(7): 263-266. (in Chinese) 崔莉薇, 石为人, 刘祥明, 等. 基于遗传粒子群算法的飞行冲突解脱[J]. 计算机工程与应用, 2013, 49(7): 263-266.

[13] Pallottino L, Feron E M, Bicchi A. Conflict resolution problems for air traffic management systems solved with mixed integer programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 3-11.

[14] Alonso-Ayuso A, Escudero L F, Martin-Campo F J. Collision avoidance in air traffic management: a mixed-integer linear optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 47-57.

[15] Alonso-Ayuso A, Escudero L F, Olaso P, et al. Conflict avoidance:0-1 linear models for conflict detection & resolution[J]. Top, 2013, 21(3): 485-504.

[16] Vela A E, Solak S, Clarke J B, et al. Near real-time fuel-optimal en route conflict resolution[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 826-837.

[17] Christodoulou M A, Kodaxakis S G. Automatic commercial aircraft-collision avoidance in free flight: the three-dimensional problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(2): 242-249.

[18] Richards A, How J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming//Proceedings of the American Control Conference, 2002, 3: 1936-1941.

[19] Hu J, Pradini M, Sastry S. Three dimensional optimal coordinated maneuvers for aircraft conflict avoidance[J]. AIAA Journal of Guidance, Control and Dynamics, 2002, 25(5): 888-900.

[20] Raghunathan A, Gopal V, Subramanian D, et al. Dynamic optimization strategies for 3D conflict resolution of multiple aircrafts[J]. AIAA Journal of Guidance, Control and Dynamics, 2004, 27(4): 586-594.

[21] Betts J T, Huffman W P. Application of sparse nonlinear programming to trajectory optimization[J]. AIAA Journal of Guidance, Control and Dynamics, 1992, 15(1): 198-206.

[22] Biegler L T, Cervantes A M, Wachter A. Advances in simultaneous strategies for dynamic process optimization[J]. Chemical Engineering Science, 2002, 57(4): 575-593.

[23] Kameswaram S, Biegler L T. Convergence rates for direct transcription of optimal control problems using collocation at radau points[J]. Computational Optimization and Applications, 2008, 41(1): 81-126.

[24] Bausa J, Tsatsaronis G T. Dynamic optimization of startup and load-Increasing processes in power plants-part I: method: internal combustion engines[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 246-250.

[25] Wachter A, Biegler L T. Line search filter methods for nonlinearprogramming: motivation and global convergence[J]. SIAM Journal on Optimization, 2005, 16(1): 1-31.

[26] Wachter A, Biegler L T. Line search filter methods for nonlinear programming: local convergence[J]. SIAM Journal on Optimization, 2005, 16(1): 32-48.

文章导航

/