电子与控制

带末端碰撞角约束的三维联合偏置比例制导律设计

  • 闫梁 ,
  • 赵继广 ,
  • 沈怀荣 ,
  • 李辕
展开
  • 1. 装备学院 航天装备系, 北京 101416;
    2. 装备学院 科研部, 北京 101416
闫梁男,博士研究生。主要研究方向:航天发射总体。Tel:010-66364196E-mail:yanliangbj@163.com;赵继广男,博士,教授,博士生导师。主要研究方向:航天发射总体。Tel:010-66364196E-mail:haofangshi@163.com

收稿日期: 2013-09-21

  修回日期: 2013-12-19

  网络出版日期: 2013-12-25

基金资助

国家“863”计划

Three-dimensional United Biased Proportional Navigation Guidance Law for Interception of Targets with Angular Constraints

  • YAN Liang ,
  • ZHAO Jiguang ,
  • SHEN Huairong ,
  • LI Yuan
Expand
  • 1. Department of Spaceflight Equipment, Academy of Equipment, Beijing 101416, China;
    2. Department of Scientific Research, Academy of Equipment, Beijing 101416, China

Received date: 2013-09-21

  Revised date: 2013-12-19

  Online published: 2013-12-25

Supported by

National High-tech Research and Development Program of China

摘要

可拦截高/低速目标并带有末端碰撞角约束的制导律设计是研究难点,为此,设计一种三维联合偏置比例制导(UBPN)律。该制导律采用时变偏置角速率和时变比例系数,结合顺轨、逆轨拦截模式的优点,使用负比例系数拦截高速目标(顺轨模式),使用正比例系数拦截低速目标(逆轨模式)。给出偏置角速率的解析形式及时变比例系数的奇点解决方法,及二维约束碰撞角到三维约束碰撞角的具体实现过程。与比例制导律、负比例制导律、偏置比例制导律进行了对比验证,结果表明脱靶量、碰撞角误差均满足制导精度要求。

本文引用格式

闫梁 , 赵继广 , 沈怀荣 , 李辕 . 带末端碰撞角约束的三维联合偏置比例制导律设计[J]. 航空学报, 2014 , 35(7) : 1999 -2010 . DOI: 10.7527/S1000-6893.2013.0498

Abstract

It is a challenging task to design a guidance law which can intercept not only high-speed targets, but also low-speed targets with impact angle constraints. In this paper, a new guidance law called united biased proportional navigation (UBPN) is proposed. The guidance law uses time-varying rate bias and navigation ratio and incorporates the advantages of head-on and head-pursuit engagement. UBPN can intercept low-speed targets with positive time-varying navigation ratios, which is head-on engagement, as well as high-speed targets with negative time-varying navigation ratios, which is head-pursuit engagement. The precise time-varying bias and solution to the singularity in time-varying navigation ratio are given, and the solution of how to use a 2D impact angle to derive a 3D impact angle is presented. Finally, the simulation results compared with proportional navigation, retro-proportional navigation and bias proportional navigation guidance law are shown, which demonstrate that the miss distance and impact angle error of this guidance law can meet the requirements.

参考文献

[1] Adler F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5): 500-507.

[2] Yang C D, Yang C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 569-577.

[3] Kim B S, Lee J G, Han H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.

[4] Ratnoo A, Ghose D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.

[5] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1816-1822.

[6] Erer K S, Merttopcuoglu O. Indirect impact-angle-control against stationary targets using biased pure proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 700-704.

[7] Shima T, Golan O M. Head pursuit guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1437-1444.

[8] Shima T. Intercept-angle guidance[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 484-492.

[9] Prasanna H M, Ghose D. Retro-proportional-navigation: a new guidance law for interception of high-speed targets[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 377-386.

[10] Murtaugh S A, Criel H E. Fundamentals of proportional navigation[J]. IEEE Spectrum, 1966, 3(12): 75-85.

[11] Brainin S, McGhee R. Optimal biased proportional navigation[J]. IEEE Transactions on Automatic Control, 1968, 13(4): 440-442.

[12] Shukla U S, Mahapatra P R. Optimization of biased proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(1): 73-79.

[13] Jeong S K, Cho S J, Kim E G. Angle constraint biased PNG//5th Asian Control Conference. Piscataway: IEEE, 2004: 1849-1854.

[14] Siouris G M. Missile guidance and control systems[M]. New York: Springer, 2004: 195-196.

[15] Zarchan P. Tactical and strategic missile guidance[M]. 3rd ed. Reston: AIAA, 2002: 15.

[16] Ulybyshev Y. Terminal guidance law based on proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 821-824.

[17] Dou L, Dou J. Three-dimensional large landing angle guidance based on two-dimensional guidance laws[J]. Chinese Journal of Aeronautics, 2011, 24(6): 756-761.

[18] Zheng L W, Jing W X, Gu L X. A terminal guidance law for exoatmospheric kill vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 953-958. (in Chinese) 郑立伟, 荆武兴, 谷立祥. 一种适用于大气层外动能拦截器的末制导律[J]. 航空学报, 2007, 28(4): 953-958.

[19] Han D P, Sun W M, Zheng Z Q, et al. New three-dimensional guidance law based on Lie group method[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 468-475. (in Chinese) 韩大鹏, 孙未蒙, 郑志强, 等. 一种基于李群方法的新型三维制导律设计[J]. 航空学报, 2009, 30(3): 468-475.

[20] Peng S C, Sun W M, Wang N, et al. 3D guidance law of BTT missile considering movement coupling[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 968-974. (in Chinese) 彭双春, 孙未蒙, 王楠, 等. 考虑运动耦合的BTT导弹三维制导律设计[J]. 航空学报, 2010, 31(5): 968-974.

[21] Hu X J, Huang X M. Three-dimensional circular guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 508-519. (in Chinese) 胡锡精, 黄雪梅. 具有碰撞角约束的三维圆轨迹制导律[J]. 航空学报, 2012, 33(3): 508-519.

[22] Costello P. Simulink simulation of proportional navigation and command to line of sight missile guidance. California: Naval Postgraduate School, 1995.

文章导航

/