流体力学与飞行力学

平面超声速引射器内部流动的大涡模拟

  • 许常悦 ,
  • 周涛 ,
  • 王从磊
展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
许常悦男,博士,副教授,硕士生导师。主要研究方向:计算流体力学、人机与环境工程。Tel:025-84896059,E-mail:cyxu@nuaa.edu.cn;周涛男,博士研究生。主要研究方向:计算流体力学、人机与环境工程。Tel:025-84896099,E-mail:zhoutao1982@126.com;王从磊男,博士研究生。主要研究方向:计算流体力学、人机与环境工程。Tel:025-84896099,E-mail:wclteken@gmail.com

收稿日期: 2013-11-14

  修回日期: 2013-12-16

  网络出版日期: 2013-12-19

基金资助

国家自然科学基金(11202100);江苏省自然科学基金(BK2011723);中央高校基本科研业务费专项资金(NS2012032);江苏省博士后科研资助计划(0902001C);江苏高校优势学科建设工程资助项目

Large Eddy Simulation of Flow in a Plane Supersonic Ejector

  • XU Changyue ,
  • ZHOU Tao ,
  • WANG Conglei
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-11-14

  Revised date: 2013-12-16

  Online published: 2013-12-19

Supported by

National Natural Science Foundation of China (11202100); Natural Science Fund in Jiangsu Province (BK2011723); Fundamental Research Funds for the Central Universities (NS2012032); Jiangsu Planned Projects for Postdoctoral Research Funds (0902001C); Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

采用大涡模拟(LES)方法对平面超声速引射器的内部流动进行了数值研究。为了验证LES方法的可靠性,对计算结果和实验数据进行了定量对比,对比的物理量有速度和温度剖面。结果表明当前计算结果和实验数据吻合得较好,这说明LES方法能够有效地研究此类问题。引射器主射流的失稳过程与自由射流的失稳过程相同,分为增长、失稳和混合3个阶段。Lamb矢量散度的分布表明,混合室内部的混合过程被限制在狭小的带状区域。混合室内压力信号的功率谱分析表明,主射流的失稳主导着混合室内部流体的混合过程,其特征St数约为0.27。

本文引用格式

许常悦 , 周涛 , 王从磊 . 平面超声速引射器内部流动的大涡模拟[J]. 航空学报, 2014 , 35(8) : 2136 -2143 . DOI: 10.7527/S1000-6893.2013.0493

Abstract

The flow in a plane supersonic ejector is investigated numerically using a large eddy simulation (LES) technique. In order to validate the reliability of LES method, quantitative comparisons of the calculated result with experimental data are made including the velocity and temperature profiles. They show that the present computational results agree well with the experimental data, which indicates that the LES method can be used to study this problem. The instability processes of the primary jet in the ejector are the same as those of the free jet, which can be divided into three different stages, i.e., shear layer growth, instability and mixing. Distributions of the Lamb vector divergence indicate that the mixing process is restricted in a narrow zonal-area. Power spectral density analysis of pressure signals in the mixing section shows that the flow mixing process is dominated by the primary jet instability, and the characteristic Strouhal number is approximately 0.27.

参考文献

[1] Riffat S B, Jiang L, Gan G. Recent development in ejector technology-a review[J]. International Journal of Ambient Energy, 2005, 26(1): 13-26.

[2] Bartosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and experimental investigations on supersonic ejectors[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 56-70.

[3] Keenan J H, Newman E P, Lustwerk F. An investigation of ejector design by analysis and experiments[J]. Journal of Applied Mechanics, 1950, 72(3): 299-309.

[4] Huang B J, Chang J M, Wang C P, et al. A 1-D analysis of ejector performance[J]. International Journal of Refrigeration, 1999, 22(5): 354-364.

[5] Kim S, Kwon S. Experimental determination of geometric parameters for an annular injection type supersonic ejector[J]. Journal of Fluids Engineering, 2006, 128(6): 1164-1171.

[6] Kim S, Kwon S. Experimental investigation of an annular injection supersonic ejector[J]. AIAA Journal, 2006, 44(8): 1905-1908.

[7] Bouhanguel A, Desevaux P, Bailly Y, et al. Flow velocity investigation by particle image velocimetry in supersonic air ejector[J]. Applied Mechanics and Materials, 2012, 232: 256-260.

[8] Chen J, Wang Z G, Wu J P, et al. Effect of the second-throat on the performance of supersonic-supersonic ejectors[J]. Science China, 2012, 55(9): 2530-2537.

[9] Riffat S B, Omer S A. CFD modeling and experimental investigation of an ejector refrigeration system using methanol as the working fluid[J]. International Journal of Energy Research, 2001, 25(2): 115-128.

[10] Varga S, Oliveira A C, Diaconu B. Numerical assessment of steam ejector efficiencies using CFD[J]. International Journal of Refrigeration, 2009, 32(6): 1203-1211.

[11] Desevaux P, Mellal A, Alves de Sousa Y. Visualization of secondary flow choking phenomena in a supersonic air ejector[J]. Journal of Visualization, 2004, 7(3): 249-256.

[12] Martin M P, Piomelli U, Gandler G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics, 1999, 13(5): 361-376.

[13] Piomelli U. Large-eddy simulation: achievements and challenges[J]. Progress in Aerospace Sciences, 1999, 35(4): 335-362.

[14] Xu C Y, Chen L W, Lu X Y. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010, 665: 238-273.

[15] Xu C Y, Zhao L Q, Sun J H. Large-eddy simulation of the compressible flow past a tabbed cylinder[J]. Chinese Science Bulletin, 2012, 57(24): 3203-3210.

[16] Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock[J]. Journal of Fluid Mechanics, 2006, 557: 29-61.

[17] Xu C Y, Chen L W, Lu X Y. Effect of Mach number on transonic flow past a circular cylinder[J]. Chinese Science Bulletin, 2009, 54(11): 1886-1893.

[18] Xu C Y, Zhao L Q, Wang C L, et al. Characteristics analysis of the transonic flow past a circular cylinder towards the critical Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1984-1992. (in Chinese) 许常悦, 赵立清, 王从磊, 等. 趋于临界马赫数的圆柱跨声速绕流特性分析[J]. 航空学报, 2012, 33(11): 1984-1992.

[19] Chen L W, Xu C Y, Lu X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643: 97-126.

[20] Chen L W, Xu C Y, Lu X Y. Large-eddy simulation of opposing-jet-perturbed supersonic flow past a hemispherical nose[J]. Modern Physics Letters B, 2010, 24(13): 1287-1290.

[21] Gilbert G B, Hill P G. Analysis and testing of two-dimensional slot nozzle ejectors with variable area mixing sections, NASA CR-2251. Washington, D.C.: NASA, 1973.

[22] Georgiadis N J, Chitsomboon T, Zhu J. Modification of the two-equation turbulence model in NPARC to a Chien low Reynolds number k-ε formulation, NASA TM-106710. Washington, D.C.: NASA, 1994.

[23] Hussain J J. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.

[24] Xu C Y, Wu D, Sun J H. Large eddy simulation of compressible turbulent round jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 583-587. (in Chinese) 许常悦, 吴丹, 孙建红. 可压缩湍流圆孔射流的大涡模拟[J]. 南京航空航天大学学报, 2010, 42(5): 583-587.

[25] Wu J Z, Lu X Y, Zhuang L X. Intergal force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576: 265-286.

[26] Hamman C W, Klewichi J C, Kirby R M. On the Lamb vector divergence in Navier-Stokes flows[J]. Journal of Fluid Mechanics, 2008, 610: 261-284.

文章导航

/