流体力学与飞行力学

高超声速飞行器前体边界层强制转捩数值模拟

  • 周玲 ,
  • 阎超 ,
  • 孔维萱
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
周玲女,博士研究生。主要研究方向:计算流体力学,转捩模式。Tel:010-82317523E-mail:zhouling@ase.buaa.edu.cn;阎超男,博士,教授,博士生导师。主要研究方向:空气动力学,计算流体力学。Tel:010-82317019E-mail:yanchao@buaa.edu.cn

收稿日期: 2013-07-29

  修回日期: 2013-11-28

  网络出版日期: 2013-12-17

基金资助

国家“973”计划(2009CB72414)

Numerical Simulation of Forced Boundary Layer Transition on Hypersonic Vehicle Forebody

  • ZHOU Ling ,
  • YAN Chao ,
  • KONG Weixuan
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2013-07-29

  Revised date: 2013-11-28

  Online published: 2013-12-17

Supported by

National Basic Research Program of China (2009CB7414)

摘要

边界层强制转捩是保证超燃冲压发动机进气道正常启动的关键技术之一,k-ω-γ转捩模式是适用于高超声速边界层转捩预测的方法。为研究该方法对边界层强制转捩的预测性能及不同转捩带对边界层强制转捩的影响特征,对原始的k-ω-γ转捩模式进行了壁面温度影响修正,采用修正的k-ω-γ转捩模式对高超声速飞行器进气道前体边界层强制转捩进行数值分析,计算了光滑外形、钻石型转捩带外形和斜坡型转捩带外形在马赫数Ma=6,7条件下的边界层转捩,并与试验结果进行了对比。研究结果表明,修正的k-ω-γ转捩模式对边界层强制转捩具有较好的预测能力,计算得到的转捩起始位置与试验结果基本吻合。两种转捩带强制转捩效果明显,其中:钻石型转捩带产生的扰动强于斜坡型转捩带,且转捩区长度较斜坡型转捩带短;斜坡型转捩带在控制边界层流动分离、减小流动横向溢出效果上优于钻石型转捩带。

本文引用格式

周玲 , 阎超 , 孔维萱 . 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014 , 35(6) : 1487 -1495 . DOI: 10.7527/S1000-6893.2013.0480

Abstract

Forced boundary layer transition is a key technology to ensure scramjet normal start, and the k-ω-γ transition model is an effective way to predict hypersonic boundary layer transition. To study the prediction performance of the k-ω-γ transition model on forced boundary layer transition and the effects of different trips on boundary layer transition, a wall temperature effect modification is conducted on the original k-ω-γ transition model, and the modified k-ω-γ transition model is employed to investigate the forced boundary layer transition ona hypersonic vehicle forebody. The transition onsets of forebodies with no trip, with diamond trips and with ramp trips under Mach 6 and 7 are studied by numerical simulation, and the results are compared with those from the experiment. It is found that the modified k-ω-γ transition model can well predict forced boundary layer transition, and the transition onset locations of numerical simulation are consistent with experiment results. Both diamond trips and ramp trips can obviously promote boundary layer transition forward to reduce flow separation and lateral flow spillage. Disturbances caused by diamond trips are stronger than those by ramp trips, and the transition length is shorter than that of ramp trips as well. However, ramp trips show a better performance on controlling boundary layer flow separation and reducing lateral flow spillage compared with diamond trips.

参考文献

[1] Berry S A, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6): 922-934.

[2] Voland R T, Huebner L D, McClinton C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1): 181-191.

[3] Berry S A, DiFulvio M, Kowalkowski M K. Forced boundary-layer transition on X-43 (Hyper-X) in NASA LaRC 31-Inch Mach 10 air tunnel, NASA TM-210315. Washington: NASA, 2000.

[4] Berry S A, Auslender A H, Dilley A D, et al. Hypersonic boundary-layer trip development for Hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 853-864.

[5] Holden M S, Wadhams T P, MacLean M. Experimental studies in the LENS supersonic and hypersonic tunnels for hypervelocity vehicle performance and code validation, AIAA-2008-2505. Reston: AIAA, 2008.

[6] Wadhams T P, MacLean M G, Holden M S. Recent experimental studies of high speed boundary layer transition in LENS facilities to further the development of predictive tools for boundary layer transition in flight, AIAA-2012-0470. Reston: AIAA, 2012.

[7] Bernardini M, Pirozzoli S, Orlandi P. Compressibility effects on roughness-induced boundary layer transition[J]. International Journal of Heat and Fluid Flow, 2012,35: 45-51.

[8] Choudhari M, Li F, Edwards J E. Stability analysis of roughness array wake in a high-speed boundary layer, AIAA-2009-0170. Reston: AIAA, 2009.

[9] Zhao J B, Shen Q, Zhang H J, et al. Boundary transition research of scramjet inlet based on the Tollmien-Schlichting(T-S) wave syntony[J]. Journal of Aerospace Power, 2010, 25(11): 2420-2424.(in Chinese) 赵俊波, 沈清, 张红军, 等. 基于TS波谐频共振的超燃进气道边界层转捩[J]. 航空动力学报, 2010, 25(11): 2420-2424.

[10] Zhao H Y, Zhou Y, Ni H L, et al. Test of forced boundary layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 1-6.(in Chinese) 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1): 1-6.

[11] Duan Z W, Xiao L H, Xiao Z X, et al. The mechanism of hypersonic boundary layer transition triggered by roughness or cavity element//15th National Computational Fluid Dynamics Conference, 2012: 99-105.(in Chinese) 段志伟, 肖良华, 肖志祥, 等. 高超声速边界层内不规则表面转捩初探//第十五届全国计算流体力学会议论文集, 2012: 99-105.

[12] Wang L, Ren Y X. Research on the forced transition in hypersonic boundary layer//15th National Computational Fluid Dynamics Conference, 2012: 402-414. (in Chinese) 王磊, 任玉新. 高超声速边界层强制转捩研究//第十五届全国计算流体力学会议论文集, 2012: 405-414.

[13] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.

[14] Luo T P, Liu Y W, Lu L P. Transition model assessment and modification in low-pressure turbin cascade[J]. Acta Aeronautica et Astronautica Sinica, 2013,34(7): 1548-1562.(in Chinese) 罗天培, 柳阳威, 陆利蓬. 低压涡轮叶栅流动中转捩模型的校验及改进[J]. 航空学报, 2013, 34(7): 1548-1562.

[15] Zhang X, Gao Z. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3): 249-257.

[16] Walters D K, Cokljat D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J]. Journal of Fluids Engineering, 2008, 130(12): 121401.

[17] Wang L, Fu S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187.

[18] Wang L, Fu S, Carnarius A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34: 62-69.

[19] Warren E S, Hassan H A. Transition closure model for predicting transition onset[J]. Journal of Aircraft, 1998, 35(5): 769-775.

[20] Mack L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3): 278-289.

[21] Kong W X, Yan C, Zhao R. Effect of wall temperature on boundary layer transition prediction using transition model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2249-2255. (in Chinese) 孔维萱, 阎超, 赵瑞.壁面温度条件对边界层转捩预测的影响[J].航空学报, 2013, 34(10): 2249-2255.

[22] Malik M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493.

[23] Fisher D F, Dougherty N S. In-flight transition measurement on a 10 cone at Mach numbers from 0.5 to 2.0, NASA TP-1971. Washington: NASA, 1982.

文章导航

/