运动导弹激励下柔性导轨振动的多体动力学分析法
收稿日期: 2013-05-08
修回日期: 2013-11-29
网络出版日期: 2013-12-17
基金资助
部级项目
Multi-body Dynamics Analysis Method for Vibration of Flexible Guide Activated by Moving Missile
Received date: 2013-05-08
Revised date: 2013-11-29
Online published: 2013-12-17
Supported by
Ministry Level Project
针对导弹轨式发射采用柔性接触进行动力学建模后计算稳定性差、结构复杂时计算规模大的问题,提出了一种用能随柔性导轨变形的柔性点线约束来替代导弹定向钮与导轨之间接触关系的建模方法;基于有限元模型、单段导轨多体动力学模型和多段拼接导轨多体动力学模型的模态和静态对比分析,验证并消除了应力刚化效应的影响;在考虑导轨应力刚化效应的前提下构建了运动导弹激励下柔性导轨振动的多体动力学模型。仿真结果表明,该方法不仅可以有效解决柔性体接触算法计算量大、计算稳定性差等问题,而且也具有较好的仿真精度。该方法可为复杂导弹发射系统发射过程的多柔体动力学建模提供可行的简化途径。
王林鹏 , 王汉平 , 杨鸣 , 毕世华 , 王绍助 . 运动导弹激励下柔性导轨振动的多体动力学分析法[J]. 航空学报, 2014 , 35(3) : 756 -763 . DOI: 10.7527/S1000-6893.2013.0481
For a launching dynamics model of a guide-type missile launcher system based on the flexible contact method, the stability is unsatisfactory, and the calculation scale is also too large when the guide shape is complex. To solve this problem, a modeling method is proposed which substitutes the flexible point-curve joint following the flexible guide for the contact relationship between the missile directional supports and the guide. By comparing the modal and static analysis results of the finite element model, the single segment guide dynamics model and the multi-segment guide dynamics model, the stress stiffening effect is verified and eliminated. Taking the stress stiffening effect of the flexible guide into consideration, a multi-body dynamics model is established which describes the vibration of the flexible guide activated by a moving missile. The simulation results show that the method not only effectively resolves the low efficiency of the flexible body contact algorithm, significantly improves the calculation stability, but also demonstrates good simulation accuracy. This method may provide a new way for modeling flexible multi-body dynamics of complex missile launcher systems.
[1] Esmailzaden E, Ghorashi M. Vibration analysis of beams traversed by uniformed partially distributed moving masses[J]. Journal of Sound and Vibration, 1995, 184(1): 9-17.
[2] Thambiratnam D, Zhuge Y. Dynamics analysis of beams on an elastic foundation subjected to moving loads[J]. Journal of Sound and Vibration, 1996, 198(2): 149-169.
[3] Li H B, Bi S H, Fang Y Q, et al. Experiment research and vibration analysis of beams activated by moving rigid body[J]. Journal of Beijing Institute of Technology, 1999, 19(1): 18-22. (in Chinese) 李海斌, 毕世华, 方远乔, 等. 移动刚体激励的梁振动分析和实验[J]. 北京理工大学学报, 1999, 19(1): 18-22.
[4] Chen Q, Yang G L,Wang X F, et al. Numerical analysis for dynamic responses of beams subjected to moving loads with non-uniform motion[J]. Journal of Nanjing University of Science and Technology, 2011, 35(2): 204-208. (in Chinese) 陈强, 杨国来, 王晓锋, 等. 变速移动载荷作用下梁的动态响应数值模拟[J]. 南京理工大学学报,2011, 35(2): 204-208.
[5] Ge J L, Yang G L,Wang Z X, et al. Modeling simulation and experiment of cantilever beams activated by moving rigid body[J]. Journal of Nanjing University of Science and Technology, 2012, 36(5): 831-834. (in Chinese) 葛建立, 杨国来, 王兆旭, 等. 移动刚体-悬臂梁耦合系统建模仿真及实验研究[J]. 南京理工大学学报, 2012, 36(5): 831-834.
[6] Bi S H, Li H B, Li J H et al. Active control of initial disturbances for rockets and missile[J]. Journal of Beijing Institute of Technology, 2001, 10(2): 143-148.
[7] Yao R C, Tang G L, Song T L. Rocket and missile launcher system dynamics[M]. Beijing: Beijing Institute of Technology Press, 1996: 43-65. (in Chinese) 姚仁昌, 唐国梁, 宋廷伦. 火箭导弹发射动力学[M].北京: 北京理工大学出版社, 1996: 43-65.
[8] Yao R C, Zhang B. Rocket and missile launcher design[M]. Beijing: Beijing Institute of Technology Press, 1998: 51-72. (in Chinese) 姚仁昌, 张波. 火箭导弹发射装置设计[M]. 北京: 北京理工大学出版社, 1998: 51-72.
[9] Craig R R, Bampton M C C. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7): 1313-1319.
[10] Hurty W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal, 1965, 3(4): 678-685.
[11] Fu Z F, Hua H X. Theory and applications of modal analysis[M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 33-45. (in Chinese) 傅志方, 华宏星. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000: 33-45.
[12] Wang X H, An F, Cao L J, et al. Direct transformation method for mode synthesis[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 92-98. (in Chinese) 汪晓虹, 安方, 曹立娟, 等. 模态综合的直接变换法[J]. 航空学报, 2009, 30(1): 92-98.
[13] Hong J Z, Liu J Y. Dynamics and modeling of mechanical systems[M]. Beijing: Higher Education Press, 2011: 77-90. (in Chinese) 洪嘉振, 刘锦阳. 机械系统计算动力学与建模[M].北京: 高等教育出版社, 2011: 77-90.
[14] Zhang X, Wang T S. Computational dynamics[M]. Beijing: Tsinghua University Press, 2007: 25-60. (in Chinese) 张雄, 王天舒. 计算动力学[M]. 北京: 清华大学出版社, 2007: 25-60.
[15] Cui N G, Liu J F, Rong S Y. Solar sail spacecraft dynamic modeling and solving[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1566-1571. (in Chinese) 崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解[J]. 航空学报, 2010, 31(8): 1566-1571.
[16] Wang Z B, Peng R Z, Gong Z G. The creating principle and realization of B-spline curve[J]. Journal of Shihezi University: Natural Science, 2009(1): 118-121. (in Chinese) 王增波, 彭仁忠, 宫兆刚. B样条曲线生成原理及实现[J]. 石河子大学学报: 自然科学版, 2009(1): 118-121.
[17] Xu J, Ke Y L, Qu W W. B-spline curve approximation based on feature points automatic recognition[J]. Journal of Mechanical Engineering, 2009(11): 212-217. (in Chinese) 徐进, 柯映林, 曲巍崴. 基于特征点自动识别的B样条曲线逼近技术[J]. 机械工程学报, 2009(11): 212-217.
[18] Mao Z Y, Liu Z J. A trajectory planning method for cubic uniform B-spline curve[J]. China Mechanical Engineering, 2010, 21(11): 2569-2572. (in Chinese) 毛征宇, 刘中坚. 一种三次均匀B样条曲线的轨迹规划方法[J]. 中国机械工程, 2010, 21(11): 2569-2572.
[19] Su X H, Li D, Tang H X, et al. Computer graphics[M]. 2nd ed. Beijing: Posts & Telecom Press, 2010: 80-111. (in Chinese) 苏小红, 李东, 唐好选, 等. 计算机图形学实用教程[M]. 2 版. 北京:人民邮电出版社, 2010: 80-111.
[20] Li W Q, Liu X. A parallel chasing algorithm for solving cyclic tridiagonal equations[J]. Review Science & Technology, 2009, 27(18): 90-93. (in Chinese) 李文强, 刘晓. 追赶法并行求解循环三对角方程组[J]. 科技导报, 2009, 27(18): 90-93.
[21] Wang L G, Tan L, Luo D F, et al. A forward elimination and backward substitution algorithm for large-scale banded linear systems[J]. Journal of University of South China: Science and Technology, 2011, 25(4): 70-74. (in Chinese) 王礼广, 谭林, 罗迪凡,等. 大规模带状线性方程组的追赶法[J]. 南华大学学报: 自然科学版, 2011, 25(4): 70-74.
[22] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(2): 139-151.
[23] Wang Y, Huston R L. A lumped parameter method in the nonlinear analysis of flexible multi-body systems[J]. Computer & Structures, 1994, 50(5): 421-432.
/
〈 | 〉 |