材料工程与机械制造

激光冲击叶片榫头变形控制与疲劳试验

  • 何卫锋 ,
  • 李应红 ,
  • 聂祥樊 ,
  • 李志丰 ,
  • 周留成
展开
  • 1. 空军工程大学 等离子体动力学重点实验室, 陕西 西安 710038;
    2. 中国人民解放军驻南方航空动力机械公司代表室, 湖南 株洲 412002
何卫锋男,博士,副教授。主要研究方向:结构强度、表面工程。Tel:029-84787527E-mail:hehe_coco@163.com

收稿日期: 2013-09-02

  修回日期: 2013-11-15

  网络出版日期: 2013-12-04

基金资助

国家自然科学基金(51205406)

Deformation Control and Fatigue Test of Blade Tenon by Laser Shock Peening

  • HE Weifeng ,
  • LI Yinghong ,
  • NIE Xiangfan ,
  • LI Zhifeng ,
  • ZHOU Liucheng
Expand
  • 1. Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
    2. PLA Office at China Southern Aviation Industry Co., Ltd, Zhuzhou 412002, China

Received date: 2013-09-02

  Revised date: 2013-11-15

  Online published: 2013-12-04

Supported by

National Natural Science Foundation of China (51205406)

摘要

针对某航空发动机涡轮叶片榫头部位疲劳断裂故障,利用激光诱导高压冲击波对榫头部位进行冲击强化,提高其抗疲劳性能。在试验测试激光冲击GH4133B镍基高温合金材料残余应力场的基础上,确定了叶片材料激光冲击工艺参数;根据榫齿面转接R区结构特征,设计了不等强度分布冲击方式,保证强化区域残余应力均匀、过渡分布,防止出现应力突变。由于榫头结构不均匀,高压冲击波引起的塑性流动使叶片发生宏观变形,采用数值仿真方法分析了激光冲击后叶片榫头宏观变形规律和机理。在此基础上提出了激光冲击叶片榫头变形控制的方法,并设计了榫头结合面冲击区域和方式,保证叶片榫头两侧对应区域的激光能量输入基本相当,通过结合面的塑性流动来减小叶片榫头宏观变形。冲击处理后的叶片榫头表面粗糙度、滚棒尺寸和平面度等均满足技术要求。并分析了激光冲击强化提高叶片高温疲劳寿命的原因。疲劳试验结果表明:激光冲击强化可提高叶片榫头部位的高温高低周复合疲劳寿命提高了279%。

本文引用格式

何卫锋 , 李应红 , 聂祥樊 , 李志丰 , 周留成 . 激光冲击叶片榫头变形控制与疲劳试验[J]. 航空学报, 2014 , 35(7) : 2041 -2048 . DOI: 10.7527/S1000-6893.2013.0468

Abstract

The first groove near the transition section of a turbine blade is easy to crack under alternate stresses and high temperature. In order to improve the fatigue strength of the blade, the whole tenon of the blade is treated by a shock wave generated by a high power density laser, which is called laser shock peening. The parameters of the laser shock peening are determined by the results of residual stress obtained in a laser shock peening test. According to the geometrical characteristics of the tenon, a varied-intensity shock pattern is designed. The tooth and groove are treated with different power densities in order to generate smooth residual stress distribution and avoid large stress gradient. Because the tenon is not symmetrical, the treated part will be deformed plastically by the high pressure shock wave, which is unsatisfactory for technical requirements. A numerical simulation model with different shock patterns is set up to analyze the deformation mechanisms. A method is brought forward to prevent macro deformation. The treated region and manner on the combining surface are determined by the deformation characteristics in different areas to ensure that the laser energy per square millimeter on one side is the same as on the other side. The macro deformation of the tenon is reduced or prevented with the plastic deformation generated on the combining surface. The surface roughness, characteristic dimension and flatness are within the range of technical requirements. And the causes are analyzed for laser shock peening improving high temperature fatigue performance. It demonstrates that laser shock peening can improve the fatigue life of the blade by about 279%.

参考文献

[1] Suresh S. Fatigue of structures and materials[M]. Wang Zhongguang, translated. Beijing: National Defense Industry Press, 1999: 99-102. (in Chinese) Suresh S. 材料的疲劳[M]. 王中光, 译. 北京: 国防工业出版社, 1999: 99-102.

[2] Hu Y J. Analysis on cracks of turbine blades in an aero-engine and application of laser shock peening to superalloy. Xi'an: Engineering College, Air Force Engineering University, 2010. (in Chinese) 胡雅骥. 某型发动机涡轮叶片故障分析与激光冲击强化可行性研究. 西安: 空军工程大学工程学院, 2010.

[3] Li W. Mechanism and key technology research on laser shock processing of steel blades. Xi'an: Engineering College, Air Force Engineering University, 2010. (in Chinese) 李伟. 钢制叶片激光冲击强化原理与关键技术研究. 西安: 空军工程大学工程学院, 2010.

[4] Tang Y, Zhang X J, Wu X R. Analysis of residual stresses and three dimensional stress intensity factors for shot peened single-edge-notch-tension specimens[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1265-1274. (in Chinese) 汤英, 张晓晶, 吴学仁. 单边缺口拉伸试样喷丸强化残余应力及其三维应力强度因子分析[J]. 航空学报, 2012, 33(7): 1265-1274.

[5] Wang M X, Chen G N, Peng Q. Influence of shot peening on tension-tension fatigue property of laser aided forming aluminum alloy samples[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1351-1356. (in Chinese) 王明星, 陈光南, 彭青. 喷丸对激光辅助成形铝合金样件拉-拉疲劳性能的影响[J]. 航空学报, 2011, 32(7): 1351-1356.

[6] Lindemann J, Buque C, Appel F. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia, 2006, 54(4): 1155-1164.

[7] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Laser Apply, 1998, 10(6): 265-279.

[8] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminum alloys: Application to high cycle fatigue behavior[J]. Materials Science and Engineering A, 1996, 210: 102-113.

[9] Ren X D, Jiang D W, Zhang Y K, et al. Estimation of fatigue safe lives of 7050-T7451 aluminum alloy samples [J]. Journal of Aerospace Power, 2011, 26(1): 185-190. (in Chinese) 任旭东, 姜大伟, 张永康, 等. 7050-T7451 铝合金试件的疲劳安全寿命估算[J]. 航空动力学报, 2011, 26(1): 185-190.

[10] McCay M H, Hopkins J A. Laser surface processing of compressor blades for erosive environments, AIAA-2002-1300.Reston: AIAA, 2002.

[11] Michael J S. Laser shock processing induced residual compression for improved damage tolerant design. Dayton: School of Engineering, University of Dayton, 2004.

[12] Fabbro R, Foumier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Applied Physics, 1990, 68(2): 775-784.

[13] Wang J, Zhou S K, Tan Y S. Application of laser shock processing on turbine engines[J]. Applied Laser, 2005, 25(1): 32-34. (in Chinese) 王健, 邹世坤, 谭永生. 激光冲击处理技术在发动机上的应用[J]. 应用激光, 2005, 25(1): 32-34.

[14] Lu J, Ni X W, He A Z. Physics of laser and material interaction[M]. Beijing: China Machine Press, 1996: 80-89. (in Chinese) 陆建, 倪晓武, 贺安之. 激光与材料相互作用物理学[M]. 北京: 机械工业出版社, 1996: 80-89.

[15] Sun C W. Effect of laser radiation[M]. Beijing: National Defense Industry Press, 2002: 30-42. (in Chinese) 孙承伟. 激光辐照效应[M]. 北京: 国防工业出版社, 2002: 30-42.

[16] Guo D H, Wu H X, Wang S B, et al. Mechanism of laser shock peening[J]. Science in China: Series E, 1999, 29(3): 222-226. (in Chinese) 郭大浩, 吴鸿兴, 王声波, 等.激光冲击强化机理研究[J]. 中国科学: E辑, 1999, 29(3): 222-226.

[17] Wang L L. Foundation of stress wave[M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 65-76. (in Chinese) 王礼立. 应力波基础[M]. 第2版. 北京: 国防工业出版社, 2005: 65-76.

[18] Zhang Q M, Liu Y, Huang F L, et al. Dynamic behavior of materials[M]. Beijing:National Defense Industry Press, 2006: 320-326. (in Chinese) 张庆明, 刘彦, 黄风雷, 等. 材料的动力学行为[M]. 北京: 国防工业出版社, 2006: 320-326.

[19] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12): 1213-1229.

[20] Tan H. Introduction to experimental shock-wave physics[M]. Beijing: National Defense Industry Press, 2007: 156-161. (in Chinese) 谭华. 实验冲击波的物理导引[M]. 北京:国防工业出版社,2007: 156-161.

[21] Hei W F, Li Y H, Li Q P, et al. Experiment research on laser shock peening of Ni-based superalloy[J]. Chinese Journal of Laser, 2010, 37(7): 1898-1902. (in Chinese) 何卫锋, 李应红, 李启鹏, 等. 涡轮叶片榫槽部位激光冲击强化试验研究[J]. 中国激光, 2010, 37(7):1898-1902.

[22] Hu Y X. Research on the numerical simulation and impact effects of laser shock processing. Shanghai: School of Mechanical Engineering, Shanghai Jiao Tong University, 2008. (in Chinese) 胡永祥. 激光冲击处理工艺过程数值建模与冲击效应研究. 上海: 上海交通大学机械工程学院, 2008.

[23] Sun R J, Yan X J. New characteristics of fatigue-creep tests on serration of turbine blades[J]. Journal of Aerospace Power, 2007, 22(3): 419-424. (in Chinese) 孙瑞杰, 闫晓军. 涡轮叶片榫齿部位疲劳/蠕变试验的新特点[J]. 航空动力学报, 2007, 22(3): 419-424.

[24] Charles S M, Tao W, Lin Y, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036.

[25] Breuer D. Vacuum/surface treatment laser peening-advanced residual stress technology[J]. Industrial Heating, 2007, 74(1): 48-50.

[26] Wyman Z Z, Gary R H. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23(S1): 31-37.

[27] Zhong Z, Sagar B, Gokul R, et al. Thermal relaxation of residual stress in laser shock peened Ti-6Al-4V alloy[J]. Surface & Coatings Technology, 2012, 206(22): 4619-4627.

[28] Zhou L C, Li Y H, He W F, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering A, 2013, 578: 181-186.

[29] Prevéy P S, Cammett J T. The effect of shot peening coverage on residual stress, cold work and fatigue in a Ni-Cr-Mo low alloy steel//Proceedings International Conference on Shot Peening. 2002.

[30] Zhang X. Fatigue short through-thickness crack closure and growth in the residual stress field [J]. Journal of Mechanical Strength, 2000, 22(2): 137-139. (in Chinese) 张雪. 疲劳短裂纹在残余应力场中的闭合和扩展[J].机械强度, 2000, 22(2): 137-139.

文章导航

/