基于DFFD技术的翼型气动优化设计
收稿日期: 2013-05-15
修回日期: 2013-11-25
网络出版日期: 2013-12-04
基金资助
国家“973”计划(2014CB744800)
Aerodynamic Optimization Design of Airfoil Using DFFD Technique
Received date: 2013-05-15
Revised date: 2013-11-25
Online published: 2013-12-04
Supported by
National Basic Research Program of China (2014CB744800)
开展了直接操作自由变形(DFFD)技术在翼型参数化及翼型气动外形优化设计中的应用研究,应用该方法可以对翼型形状进行直接操纵和精细的局部修型,从而在一定程度上克服了自由变形(FFD)技术无法直接指定几何外形变形量的局限性。通过最小二乘模式根据翼型表面直接操作点的位移求解各个FFD控制点相应的位移,将翼型设计参数从FFD控制点转化为翼型表面的直接操作点,从而有效地减少了高阶FFD控制体进行翼型参数化时的设计参数个数。算例表明,相比于FFD方法,DFFD方法不仅具备直接操纵翼型几何外形的能力,更具物理直观性,并且比FFD方法具有更好的局部变形特性。运用该技术结合遗传算法对RAE2822翼型进行了气动减阻设计,显著减小了设计状态下翼型的阻力,并且可以有效施加如前后梁位置翼型厚度等工程实用的几何约束,证明了该方法的有效性。
陈颂 , 白俊强 , 孙智伟 , 王丹 . 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014 , 35(3) : 695 -705 . DOI: 10.7527/S1000-6893.2013.0473
This paper studies the directly manipulated free form deformation (DFFD) technique applied to airfoil geometry parameterization and aerodynamic shape optimization. By this method the direct manipulation and refined local shaping of an airfoil can be achieved, which overcomes the disadvantage of the traditional free form deformation (FFD) technique. The displacements of the FFD control points are computed by the least-square method using the specified displacements of some pilot points of the airfoil, so that the design variables are transformed from the FFD control points to the pilot points, which reduces the number of design variables when using a high order FFD control volume to achieve shape optimization. The case study shows that, compared with FFD, DFFD is of better physical intuition and geometry deforming capability. Finally, DFFD is applied to the aerodynamic shape optimization of RAE2822 airfoil together with a genetic algorithm, which shows that this approach is feasible and efficient, and it can be coupled with effective geometrical constraints.
[1] Yamazaki W, Mouton S, Carrier G. Geometry parameterization and computational mesh deformation by physics-based direct manipulation approaches[J]. AIAA Journal, 2010, 48(8): 1817-1832.
[2] Hicks R, Henne P. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412.
[3] Sobieczky H. Parametric airfoils and wings[J]. Notes on Numerical Fluid Mechnics, 1998, 68: 71-87.
[4] Samareh J. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884.
[5] Kulfan B. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
[6] Ceze M, Hayashi M, Volpe E. A study of the CST parameterization characteristics, AIAA-2009-3767[R]. Reston: AIAA, 2009.
[7] Lane A K,Marshall D D. A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology, AIAA-2009-1461[R]. Reston: AIAA, 2009.
[8] Sederberg T, Parry S. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986, 86: 151-160.
[9] Duvigneau R, Chaigne B, Désidéri J A. Multi-level parameterization for shape optimization in aerodynamics and electromagnetics using particle swarm optimization, Research Report No.RR-6003[R]. 2006.
[10] Palacios F, Alonso J J, Colono M, et al. Adjoint-based method for supersonic aircraft design using equivalent area distribution, AIAA-2012-0269[R]. Reston: AIAA, 2012.
[11] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826.(in Chinese) 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[12] Ma X Y, Wu W H, Fan Z L. Free deformation method of wing based on NURBS[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42 (S2): 195-197. (in Chinese) 马晓永, 吴文华, 范召林. 基于NURBS的机翼自由变形方法[J]. 四川大学学报, 2010, 42(增刊2): 195-197.
[13] Ma X Y, Fan Z L, Wu W H, et al. Aerodynamic shape optimization of wing based on FFD[C]//13th Chinese System Simulation Technology and Application Annual Conference, 2011: 599-602. (in Chinese) 马晓永, 范召林, 吴文华, 等. 基于FFD技术的机翼气动外形优化仿真[C]//第13届中国系统仿真技术及其应用学术年会, 2011: 599-602.
[14] Hu S M, Zhang H, Tai C L, et al. Direct manipulation of FFD: efficient explicit solutions and decomposable multiple point constraint[J]. The Visual Computer, 2001, 17(6): 370-379.
[15] Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformations[J]. Computer Graphics, 1992, 26(2): 177-184.
[16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Jouranal of Computational Physics, 1981, 43(2): 357-372.
[18] Yoon S, Jameson A. Lower-upper-symmetric-Gauss-seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[19] Ceze M, Fidkowski K J. Drag prediction using adaptive discontinuous finite elements, AIAA-2013-0051[R]. Res-ton: AIAA, 2013.
[20] Wang X P, Gao Z H. Aerodynamic optimization design of airfoil based on genetic algorithm[J]. Acta Aerodynamica Sinica, 2000, 18(3): 324-329. (in Chinese) 王晓鹏, 高正红. 基于遗传算法的翼型气动优化设计[J]. 空气动力学学报, 2000, 18(3): 324-329.
[21] Cheng B S. Aircraft design handbook episode 5: civil aircraft overall design[M]. Beijing: Aviation Industry Press, 2005. (in Chinese) 程不时. 飞机设计手册第5册: 民用飞机总体设计[M]. 北京: 航空工业出版社, 2005.
/
〈 |
|
〉 |