非圆信号的贝叶斯稀疏重构阵列测向方法
收稿日期: 2013-04-27
修回日期: 2013-11-05
网络出版日期: 2013-11-29
基金资助
国家自然科学基金(61302141);电子信息系统复杂电磁环境效应国家重点实验室主任基金(CEMEE2014Z0202B)
Direction of Arrival Estimation Method of Non-circular Signals via Sparse Bayesian Reconstruction
Received date: 2013-04-27
Revised date: 2013-11-05
Online published: 2013-11-29
Supported by
National Natural Science Foundation of China (61302141); Director Foundation of CEMEE (CEMEE2014Z0202B)
对信号非圆特性的有效利用能显著改善子空间类阵列测向方法的性能,但难以弥补此类方法在低信噪比(SNR)、小样本等信号环境适应能力方面的局限。本文引入贝叶斯稀疏学习(SBL)技术以解决非圆信号的波达方向(DOA)估计问题,在结合信号非圆特性的同时对入射信号的空域稀疏性加以利用,通过将非圆信号阵列输出协方差矩阵和共轭协方差矩阵在预先定义的空域字典集上进行稀疏重构,得到入射信号的空间谱重构结果,并依据其谱峰位置估计各信号的方向。该方法对独立和相关信号都具有较好的适应能力,仿真结果验证了该方法在信号环境适应能力和相关信号测向精度等方面的优势。
刘章孟 , 周一宇 , 吴海斌 . 非圆信号的贝叶斯稀疏重构阵列测向方法[J]. 航空学报, 2014 , 35(3) : 821 -827 . DOI: 10.7527/S1000-6893.2013.0461
The performance of the subspace-based direction of arrival (DOA) estimation methods can be improved significantly via effective exploitation of the non-circularity of the incident signals, but the shortcomings of these methods in adaptation to demanding scenarios, such as low signal-to-noise ratio (SNR) and limited snapshots, can hardly be made up. The sparse Bayesian learning (SBL) technique is introduced in this paper to deal with the DOA estimation problem of non-circular signals. The spatial sparsity of the incident signals is exploited together with their non-circularity property, and the covariance and conjugate covariance matrices of the array outputs of non-circular signals are decomposed jointly under a sparsity constraint to reconstruct the spatial spectrum of the incident signals, and the DOA estimates are finally obtained according to the spectrum peak locations. This method is robust against inter-signal correlation, and its superiorities in adaptation to demanding scenarios as well as in DOA estimation precision are demonstrated by the simulation results.
[1] Krim H, Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[2] Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[3] Edelblute D J. Noncircularity[J]. IEEE Signal Processing Letters, 1996, 3(5): 156-157.
[4] Gounon P, Adnet C, Galy J. Localization angulaire de signaux non circulaires[J]. Traitement du Signal, 1998, 15(1): 17-23.
[5] Charge P, Wang Y, Saillard J. A non-circular sources direction finding method using polynomial rooting[J]. Signal Processing, 2001, 81(8): 1765-1770.
[6] Abeida H, Delmas J P. MUSIC-like estimation of direction of arrival for noncircular sources[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2678-2690.
[7] Liu J, Huang Z T, Zhou Y. Extended 2q-MUSIC algorithm for noncircular signals[J]. Signal Processing, 2008, 88(6): 1327-1339.
[8] Gao F, Nallanathan A, Wang Y. Improved MUSIC under the coexistence of both circular and noncircular sources[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 3033-3038.
[9] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.
[10] Fuchs J J. On the application of the global matched filter to DOA estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 2001, 49(4): 702-709.
[11] Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
[12] Liu Z M, Huang Z T, Zhou Y Y. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4256-4270.
[13] Yin J, Chen T. Direction-of-arrival estimation using a sparse representation of array covariance vectors[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493.
[14] Liu Z M, Huang Z T, Zhou Y Y. An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Transactions on Wireless Communications, 2012, 11(10): 3607-3617.
[15] Liu Z M, Huang Z T, Zhou Y Y. Sparsity-inducing direction finding for narrowband and wideband signals based on array covariance vectors[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 3896-3907.
[16] Liu Z M, Zhou Y Y. A unified framework and sparse Bayesian perspective for direction-of-arrival estimation in the presence of array imperfections[J]. IEEE Transactions on Signal Processing, 2013, 61(15): 3786-3798.
[17] Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(1): 211-244.
[18] Wipf D P. Bayesian methods for finding sparse representations[D]. San Diego: University of California, 2006.
[19] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1977, 39(1): 1-38.
[20] Stoica P, Selen Y. Model-order selection: A review of information criterion rules[J]. IEEE Signal Processing Magazine, 2004, 21(4): 36-47.
[21] Fuchs J J. Multipath time-delay detection and estimation[J]. IEEE Transactions on Signal Processing, 1999, 47(1): 237-243.
/
〈 | 〉 |