流体力学与飞行力学

涡轮间隙泄漏涡破碎对损失的影响

  • 高杰 ,
  • 郑群 ,
  • 许天帮 ,
  • 张正一
展开
  • 1. 哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001;
    2. 中国船舶重工集团公司第703研究所, 黑龙江 哈尔滨 150078
高杰男,博士研究生。主要研究方向:叶轮机械气动热力学。E-mail:gaojie_d@hrbeu.edu.cn;郑群男,博士,教授,博士生导师。主要研究方向:叶轮机械气动热力学。Tel:0451-82518116E-mail:zhengqun@hrbeu.edu.cn

收稿日期: 2013-07-01

  修回日期: 2013-11-11

  网络出版日期: 2013-11-26

基金资助

中央高校基本科研业务费专项基金(HEUCF130310)

Effect of Tip Leakage Vortex Breakdown on Losses in Turbines

  • GAO Jie ,
  • ZHENG Qun ,
  • XU Tianbang ,
  • ZHANG Zhengyi
Expand
  • 1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China;
    2. The 703 Research Institute of CSIC, Harbin 150078, China

Received date: 2013-07-01

  Revised date: 2013-11-11

  Online published: 2013-11-26

Supported by

Fundamental Research Funds for the Central Universities (HEUCF130310)

摘要

采用数值方法联合标准k-ω两方程湍流模型求解雷诺平均Navier-Stokes方程组,研究了不同间隙高度下GE-E3(Energy Efficient Engine)涡轮第一级动叶顶部间隙泄漏涡(TLV)的破碎特性及其对泄漏损失的影响。首先描述了泄漏涡的破碎现象,并对其动力学特性进行了理论分析,接着研究了间隙高度对泄漏涡结构及破碎特性的影响,最后对泄漏涡破碎与损失的关系进行了探讨。研究结果表明:涡轮叶顶间隙泄漏涡具有不稳定特性,当泄漏涡具有足够的强度可以克服通道涡卷吸形成完整涡结构时,在叶片后半部分逆压区发生了涡破碎现象,带来了额外的涡破碎损失;间隙高度对泄漏涡破碎位置的影响比较明显,在大间隙下泄漏涡趋于相对稳定;叶顶泄漏流产生的掺混损失以泄漏涡的破碎为标志分为两个阶段,大量的掺混损失发生在泄漏涡破碎之后,这也是叶顶泄漏流产生损失的主要部分。

本文引用格式

高杰 , 郑群 , 许天帮 , 张正一 . 涡轮间隙泄漏涡破碎对损失的影响[J]. 航空学报, 2014 , 35(5) : 1257 -1264 . DOI: 10.7527/S1000-6893.2013.0465

Abstract

Numerical investigation is performed to simulate the tip leakage vortex (TLV) breakdown characteristics and its effect on leakage losses in the first-stage rotor blade of GE-E3 (Energy Efficient Engine) turbines at various tip clearances, by solving the Reynolds-averaged Navier-Stokes equations in conjunction with a standard k-ω two-equation turbulence model. The tip leakage vortex breakdown phenomenon and its dynamics are analyzed; so are the effects of tip clearance height on the tip leakage vortex structure and the vortex breakdown characteristics. Furthermore, the relationship between the tip leakage vortex breakdown and losses is investigated. Numerical results show that the turbine tip leakage vortex is unstable. When the tip leakage vortex has sufficient strength to overcome the entrainment of the tip passage vortex, and forms a complete vortex structure, the tip leakage vortex breakdown is initiated in the adverse-pressure region of the second half of the rotor blade, which leads to extra vortex breakdown losses. The tip clearance height has a great impact on the vortex breakdown location, and the tip leakage vortex tends to be relatively stable at large tip clearances. The tip mixing losses are divided into two stages marked by the tip leakage vortex breakdown. A lot of mixing losses occur after the tip leakage vortex breakdown, which is the main part of the tip mixing losses.

参考文献

[1] Bunker R S. Axial turbine blade tips: function, design, and durability[J]. Journal of Propulsion and Power, 2006, 22(2): 271-285.

[2] Xiao X W, McCarter A A, Lakshminarayana B. Tip clearance effects in a turbine rotor: Part I-Pressure field and loss[J]. Journal of Turbomachinery, 2001, 123(2): 296-304.

[3] McCarter A A, Xiao X W, Lakshminarayana B. Tip clearance effects in a turbine rotor: Part II-Velocity field and flow physics[J]. Journal of Turbomachinery, 2001, 123(2): 305-313.

[4] Sun H, Li J, Feng Z P. Effects of tip clearance on unsteady flow characteristics in an axial turbine stage, ASME Paper, GT-2009-59828. New York: ASME, 2009.

[5] Gao J, Zheng Q. Effect of squealer tip geometry on rotor blade aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 218-226. (in Chinese) 高杰, 郑群. 叶顶凹槽形态对动叶气动性能的影响[J]. 航空学报, 2013, 34(2): 218-226.

[6] Lee S W, Kim S U, Kim K H. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade[J]. International Journal of Heat and Fluid Flow, 2012, 34: 36-46.

[7] Gao J, Zheng Q, Yue G Q. Reduction of tip clearance losses in an unshrouded turbine by rotor-casing contouring[J]. Journal of Propulsion and Power, 2012, 28(5): 936-945.

[8] Niu M S, Zang S S. Experimental and numerical investigations of tip injection on tip clearance flow in an axial turbine cascade[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1214-1222.

[9] Tallman J, Lakshminarayana B. Methods for desensitizing tip clearance effects in turbines, ASME Paper, GT-2001-0486. New York: ASME, 2001.

[10] Yin X Y, Sun D J. Vortex stability[M]. Beijing: National Defense Industry Press, 2003: 182-190. (in Chinese) 尹协远, 孙德军. 旋涡流动的稳定性[M]. 北京: 国防工业出版社, 2003: 182-190.

[11] Sell M, Treiber M, Casciaro C, et al. Tip-clearance-affected flow fields in a turbine blade row[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1999, 213(4): 309-318.

[12] Li W, Qiao W Y, Xu K F. Unsteadiness of tip clearance vortex in turbine[J]. Journal of Propulsion Technology, 2008, 29(2): 204-207. (in Chinese) 李伟, 乔渭阳, 许开富. 涡轮叶尖间隙泄漏涡不稳定性分析[J]. 推进技术, 2008, 29(2): 204-207.

[13] Huang A C, Greitzer E M, Tan C S, et al. Blade loading effects on axial turbine tip leakage vortex dynamics and loss, ASME Paper, GT-2012-68302. New York: ASME, 2012.

[14] Wang S T, Wu M, Wang Z Q, et al. The effect of passage vortex stability on energy loss[J]. Journal of Engineering Thermophysics, 2000, 21(4): 425-429. (in Chinese) 王松涛, 吴猛, 王仲奇, 等. 通道涡稳定性及对损失的影响[J]. 工程热物理学报, 2000, 21(4): 425-429.

[15] Timko L P. Energy efficient engine high pressure turbine component test performance report, NASA CR-168289. Washington, D.C.: NASA, 1984.

[16] Ameri A A, Steinthorsson E, Rigby D L. Effect of squealer tip on rotor heat transfer and efficiency[J]. Journal of Turbomachinery, 1998, 120(4): 753-759.

[17] Gao J, Zheng Q, Li Y J, et al. Effect of axially non-uniform rotor tip clearance on aerodynamic performance of an unshrouded axial turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(2): 231-244.

[18] Yang D L, Feng Z P. Tip leakage flow and heat transfer predictions for turbine blades, ASME Paper, GT-2007-27728. New York: ASME, 2007.

[19] Hall M G. A new approach to vortex breakdown//Proceedings of the Heat Transfer and Fluid Mechanics Institute, 1967: 319-340.

[20] Denton J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656.

文章导航

/