流体力学与飞行力学

基于POD方法的弯曲扩压通道分离流控制的时空特性分析

  • 朱剑锋 ,
  • 黄国平 ,
  • 傅鑫 ,
  • 付勇
展开
  • 南京航空航天大学 能源与动力学院, 江苏 南京 210016
朱剑锋男,博士研究生。主要研究方向:流动分离及流场控制,叶轮机械气体动力学。Tel:025-84896887 E-mail:zhjf@nuaa.edu.cn;黄国平男,博士,教授,博士生导师。主要研究方向:叶轮机械气体动力学,微型发动机技术,高超声速推进系统。Tel:025-84890912 E-mail:hgp@nuaa.edu.cn

收稿日期: 2013-05-21

  修回日期: 2013-11-05

  网络出版日期: 2013-11-26

基金资助

国家自然科学基金(51176072);江苏省普通高校研究生科研创新基金(CXLX11_0216)

Spatiotemporal Characteristics Analysis for Controlling Flow Separation in Divergent Curved Channels with POD Method

  • ZHU Jianfeng ,
  • HUANG Guoping ,
  • FU Xin ,
  • FU Yong
Expand
  • College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-05-21

  Revised date: 2013-11-05

  Online published: 2013-11-26

Supported by

National Natural Science Foundation of China (51176072);Funding of Jiangsu Innovation Program for Graduate Education (CXLX11_0216)

摘要

为了分析一种运用于压气机内分离流控制的无源脉冲射流控制技术的特点,基于弯曲扩压通道试验模型进行了脉冲射流控制的试验和数值模拟研究,结果均表明当射流频率接近通道内分离涡主频时控制效果最为明显;引入了本征正交分解(POD)技术对无控状态下通道内流场结构进行分析,得到了POD各阶模态的流动结构特征。在此基础上对比分析了定常及非定常控制特点,结果表明:非定常控制方式主要是重分配各阶模态之间的能量,有选择性地强化或削弱某阶模态;定常射流控制则是整体削弱高阶模态,压制通道内复杂流动现象;合理地构建脉冲射流可使能量从高阶模态向平均流模态进行转移,能量的转移通过空间流场结构的重构和模态时间演化特性的序化实现。最后针对POD分析结果进行了验证性试验研究,试验结果部分反映了时空特性的变化规律,提升了POD分析结果的可信度。

本文引用格式

朱剑锋 , 黄国平 , 傅鑫 , 付勇 . 基于POD方法的弯曲扩压通道分离流控制的时空特性分析[J]. 航空学报, 2014 , 35(4) : 921 -932 . DOI: 10.7527/S1000-6893.2013.0453

Abstract

In order to analyze the characteristic of a micro pulsed aspirated jet in a compressor, an experimental and numerical investigation is conducted about pulsed jet control, which is based on a divergent curved channels experimental mode. When the frequency of the pulsed jet is close to the characteristic frequency of the separation vortex, the control effects are obvious. In order to analyze the unsteady control mechanism, the proper orthogonal decomposition (POD) method is introduced, and the spatial and temporal flow characteristics are obtained. According to the POD analysis results of the steady and unsteady control methods, it can be noted that the main effect of the unsteady pulsed jet is reallocating the energy of each mode, and selectively strengthening or weakening certain modes; the effect of the steady jet is reducing in an overall manner the energy of high order modes. Based on the reasonable control parameters of the pulsed jet, the energy in higher modes will be transferred to the average flow mode, and the translation of modal energy comes from the reconstructing of spatial flow structurnd the ordering of modal evolution characteristics. Finally, experimental investigation is performed to validate the POD analysis. The results reflect partially the variation of spatiotemporal characteristics of a pulsed jet and the credibility of the POD analysis results is enhanced.

参考文献

[1] Rivir R B, Sondergaard R, Bons J P, et al. Passive and active control of separation in gas turbines, AIAA-2000-2235. Reston: AIAA, 2000.

[2] Greenblatt D, Wygnanski I J. The control of flow separation by periodic excitation[J]. Progress in Aerospace Sciences, 2000, 36(7): 487-545.

[3] Zhang P F, Wang J J, Feng L H. Review on the zero-net-mass-flux jet and the application in separation flow control[J]. Science in China Series E: Technological Sciences, 2008, 38(3): 321-349. (in Chinese) 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学 E辑: 技术科学, 2008, 38(3): 321-349.

[4] Gmelin C, Zander V, Huppertz A, et al. Active flow control concepts on a highly loaded subsonic compressor cascade: resume of experimental and numerical results, ASME Paper, GT-2011-46468. Vancouver: ASME, 2011.

[5] Zheng X Q, Zhou X B, Zhou S. Investigation on a type of flow control to weaken unsteady separated flows by unsteady excitation in axial flow compressors[J]. Journal of Turbomachinery, 2005, 127(7): 489-496.

[6] Zheng X Q, Zhou S, Lu Y J, et al. Flow control of annular compressor cascade by synthetic jets[J]. Journal of Turbomachinery, 2008, 130(2): 021018-1-7.

[7] Lumley J L. The structure of inhomogeneous turbulent flows[J]. Atmospheric Turbulence and Wave Propagation, 1967: 166-178.

[8] Aubry N, Holmes P, Lumley J L. The dynamic of coherent structures in the wall region of a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1988, 192(1): 115-173.

[9] Ma X, Karniadakis G E. A low-dimensional model for simulating three-dimensional cylinder flow[J]. Journal of Fluid Mechanics, 2002, 458(1): 181-190.

[10] Fan C Q, Li X W. Proper orthogonal decomposition method for flow analysis of multi element airfoil[J]. Journal of Shanghai University: Natural Science, 2012, 18(1): 76-82. (in Chinese) 范晨麒, 李孝伟. 基于本征正交分解方法的多段翼型流动分析[J].上海大学学报: 自然科学版, 2012, 18(1): 76-82.

[11] Cizmas P, Palacios A. Proper orthogonal decomposition of turbine rotor-stator interaction[J]. Journal of Propulsion Power, 2003, 19(2): 268-281.

[12] Feng L H, Wang J J, Pan C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control[J]. Physics of Fluid, 2011, 23: 014106.

[13] Zhu J F, Huang G P, Fu X, et al. Technology investigation of controlling flow separation by micro-pulsed-jet without external device[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1757-1767. (in Chinese) 朱剑锋, 黄国平, 傅鑫, 等. 一种控制气流分离的无源微脉冲射流射流技术研究[J]. 航空学报, 2013, 34(8): 1757-1767.

[14] Huang G P, Chen J, Xia C, et al. Passive pulse ejector for inhibiting blade back separation of air compressor: China. ZL200810195408.3. 2011-10-30.(in Chinese) 黄国平, 陈杰, 夏晨, 等. 抑制压气机叶背分离的无源脉冲射流器:中国. ZL200810195408.03.2011-10-30.

[15] Chatterjee A. An introduction to the proper orthogonal decomposition[J]. Current Science: Computational Science, 2000, 78(7): 809-817.

文章导航

/