流体力学与飞行力学

纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟

  • 倪芳原 ,
  • 史志伟 ,
  • 杜海
展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
倪芳原 女,硕士研究生。主要研究方向:空气动力学设计。Tel:025-84896464 E-mail:atom_lax@126.com;史志伟 男,博士,教授。主要研究方向:实验流体力学,非定常空气动力学,微型飞行器空气动力学。Tel:025-84896464 E-mail:szwam@nuaa.edu.cn;杜海 男,博士研究生。主要研究方向:实验流体力学。Tel:025-84896464 E-mail:duhai1986@nuaa.edu.cn

收稿日期: 2013-04-27

  修回日期: 2013-11-05

  网络出版日期: 2013-11-26

Numerical Simulation of Nanosecond Pulsed Plasma Actuator for Cylindrical High-speed Flow Control

  • NI Fangyuan ,
  • SHI Zhiwei ,
  • DU Hai
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-04-27

  Revised date: 2013-11-05

  Online published: 2013-11-26

摘要

利用数值模拟,研究了纳秒脉冲介质阻挡放电(NS-DBD)等离子体激励器在圆柱高速流动控制中的应用。首先,研究了单电极NS-DBD等离子体激励器在静止空气中放电后的流场特性。研究表明在介质阻挡放电形成的等离子体区域,有局部能量快速注入,放电结束5 μs后在上极板后端点位置形成了一个局部温度高达900 K的热点,由此引发很强的压力扰动,形成以上极板后端点位置为中心,扩散速度约为声速的半圆形压缩波。在此基础上,通过数值模拟研究了NS-DBD等离子体激励器布置在直径为6 mm的圆柱上,来流马赫数为Ma=4.6时,对圆柱脱体激波的控制作用。研究表明介质阻挡放电形成的半圆形压缩波对于脱体激波有很强的干扰作用,激波距离增加了15.7%,激波强度也有相应的减弱,导致阻力减少了13%。

本文引用格式

倪芳原 , 史志伟 , 杜海 . 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J]. 航空学报, 2014 , 35(3) : 657 -665 . DOI: 10.7527/S1000-6893.2013.0451

Abstract

A computational study is performed for nanosecond-pulse dielectric barrier discharge (NS-DBD) plasma actuator using for cylindrical high-speed flow control. First, the flow field characteristic of a single NS-DBD plasma actuator in quiescent air is studied. The result shows that in the region of dielectric barrier discharge, there is a rapid injection of energy. At 5 μs after the discharge, a hot spot is formed at the downstream edge of the upper electrode. The maxima temperature of the hot spot reaches up to 900 K. The fast heating effect will result in a strong pressure perturbation and form an asymmetric perturbation wave spreading at the speed of sound. On this basis, the numerical simulation of NS-DBD plasma actuator disposed on the cylinder in the free stream Ma = 4.6 is presented in this paper. Studies have shown that as the compression wave travels upstream, it interacts with the bow-shock and momentarily increases the bow-shock standing distance and weakens the shock strength, thus resulting in a drag decrease by as much as 13%.

参考文献

[1] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanica, 2010, 42: 505-529.

[2] Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589. (in Chinese) 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589.

[3] Du H, Shi Z W, Geng X, et al. Experimental study of directional lateral aerodynamic moment control of micro air vehicle by plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1781-1790. (in Chinese) 杜海, 史志伟, 耿玺, 等. 等离子体激励器对微型飞行器横航向气动力矩控制的实验研究[J]. 航空学报, 2012, 33(10): 1781-1790.

[4] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge[J]. AIAA Journal, 2009, 47(1): 168-185.

[5] Li Y H, Wu Y, Liang H, et al. Theory of enhancing the inhibition of flow separation with plasma shock flow control[J]. Chinese Science Bulletin, 2010, 55(31): 3060-3068. (in Chinese) 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3060-3068.

[6] Bisek N J, Poggiey J, Nishihara M, et al. Computational and experimental analysis of Mach 5 air flow over a cylinder with a nanosecond pulse discharge, AIAA-2012-186[R]. Reston: AIAA, 2012.

[7] Adamovich I, Little J, Nishihara M, et al. Nanosecond pulse surface discharges for high-speed flow control, AIAA-2012-3137[R]. Reston: AIAA, 2012.

[8] Peschke P, Goekcey S, Hollensteinz C, et al. Interac-tion between nanosecond pulse DBD actuators and transonic flow, AIAA-2011-3734[R]. Reston: AIAA, 2011.

[9] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actutator[J]. Journal of Physics D: Applied Physics, 2009, 42(19): 194017.

[10] Che X K, Shao T, Nie W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D: Applied Physics, 2012, 45(14): 145201.

[11] Dawson R, Little J. Characterization of nano-second pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control, AIAA-2012-3236[R]. Reston: AIAA, 2012.

[12] Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the nonequilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology, 1992, 1(3): 207-220.

[13] Poggie J, Bisek N J. Numerical simulation of nanosecond-pulse electrical discharges, AIAA-2012-1025[R]. Reston: AIAA, 2012.

[14] Breden D, Raja L. Simulations of nanosecond pulse plasmas in supersonic flows for combustion applications[J]. AIAA Journal, 2012, 50(3): 647-658.

[15] Little J, Takashima K, Nishihara M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2): 350-365.

文章导航

/