高超声速飞行器主动冷却系统优化设计
收稿日期: 2013-03-12
修回日期: 2013-11-05
网络出版日期: 2013-11-26
基金资助
国家自然科学基金创新研究群体项目(51121004)
Optimal Design for Active Cooling System of Hypersonic Vehicle
Received date: 2013-03-12
Revised date: 2013-11-05
Online published: 2013-11-26
Supported by
The Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51121004)
以碳氢燃料为冷却剂的主动冷却系统是进行高超声速飞行器热防护最有效的方法之一。在满足工作要求的情况下,应尽量减小主动冷却系统的质量,实现飞行器的轻质化目标。利用MATLAB@2007软件对高超声速飞行器燃烧室的主动冷却系统进行了优化设计,计算了冷却通道在满足各项热负荷条件下,系统的最小质量以及此时所对应的冷却通道各项尺寸。选择了Inconel X-750、Inconel 625和Hastelloy X 这3种不同的镍基合金分别当做冷却通道固壁材料,并且在主动冷却系统的近燃烧侧引入热障涂层,以分析不同材料和有无热障涂层对系统轻质化的影响,为高超声速飞行器主动冷却系统的材料选择和优化设计提供了理论依据。
汪新智 , 马军军 , 彭稳根 , 何玉荣 . 高超声速飞行器主动冷却系统优化设计[J]. 航空学报, 2014 , 35(3) : 624 -633 . DOI: 10.7527/S1000-6893.2013.0449
Active cooling with hydrocarbon-fuel is one of the most effective ways for hypersonic vehicle thermal protection. In order to enture the lightweight of a flight vehicle it is very necessary to minimize the weight of the active cooling system under working conditions. This paper provides an optimization method for the purpose by developing a code based on MATLAB@2007. The code is applied to calculate the minimum weight and the structure dimensions of the active cooling system under various loading conditions. Three Ni-based alloys including Inconel X-750, Inconel 625 and Hastelloy X are selected as the solid materials of the active cooling system, respectively. A thermal barrier coating is applied on the actively cooled panel side near the combustion chamber to discuss the thermal barrier coating's effect on minimizing the weight. This work is helpful in testing the optimal result of different materials and provides a good theoretical foundation for the material selection and optimal design of the active cooling system.
[1] Yang Y Z, Yang J L, Fang D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1): 47-56. (in Chinese) 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1): 47-56.
[2] Craig C. Air Force X-37B wings into space[J]. Aerospace America, 2010(10): 34-39.
[3] He W S. Review of scramjet engine development[J]. Journal of Rocket Propulsion, 2005, 31(1): 29-32. (in Chinese) 贺武生. 超燃冲压发动机研究综述[J]. 火箭推进, 2005, 31(1): 29-32.
[4] Guo Y S, Jiang W, Lin R S. A novel calorimeter for the determination of the heat sink of endothermic hydrocarbon fuels [J]. Acta Chimica Sinica, 2002, 60(1): 55-59. (in Chinese) 郭永胜, 蒋武, 林瑞森. 新型热量计的研制及其在碳氢燃料热沉测定中的应用[J]. 化学学报, 2002, 60(1): 55-59.
[5] Zhou Y X. Analysis and design on scramjet active cooling system based on heat transfer enhancement[D]. Harbin: School of Energy Science and Engineering, Harbin Institute of Technology, 2007. (in Chinese) 周有新. 超燃冲压发动机再生主动冷却结构强化换热分析与设计[D]. 哈尔滨:哈尔滨工业大学能源科学与工程学院, 2007.
[6] Ren J W, Tan Y H. Thermal protection techniques of ramjet combustor[J]. Journal of Rocket Propulsion, 2006, 32(4): 38-42. (in Chinese) 任加万, 谭永华. 冲压发动机燃烧室热防护技术[J]. 火箭推进, 2006, 32(4): 38-42.
[7] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.
[8] Ruan B, Meng H. Numerical model development and validation for hydrocarbon fuel supercritical heat transfer with endothermic pyrolysis[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2220-2226. (in Chinese) 阮波, 孟华. 碳氢燃料裂解吸热反应及超临界传热现象数值模型的构建与验证[J]. 航空学报, 2011, 32(12): 2220-2226.
[9] Liu S, Zhang B M. Effects of active cooling on the metal thermal protection systems[J]. Aerospace Science and Technology, 2011, 15(7): 526-533.
[10] Hua Y X, Wang Y Z, Meng H. Numerical study on turbulent convective heat transfer with n-heptane under supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1324-1330. (in Chinese) 华益新, 王亚洲, 孟华. 超临界压力下正庚烷的湍流传热数值研究[J]. 航空学报, 2010, 31(7): 1324-1330.
[11] Chen Z J, Wang L L, Meng H. Study of heat transfer of cryogenic methane under supercritical pressure with consideration of thermal conduction in engine cooling channel walls[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 8-18. (in Chinese) 陈尊敬, 王雷雷, 孟华. 考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J]. 航空学报, 2013, 34(1): 8-18.
[12] Sylvia M J, Matthew J G, Dan L, et al. Development of new TPS at NASA Ames Research Center, AIAA-2008-2560[R]. Reston: AIAA, 2008.
[13] Song K D, Choi S H, Scotti S J. Transpiration cooling experiment for scramjet engine combustion chamber by high heat fluxes [J]. Journal of Propulsion and Power, 2006, 22(1): 96-102.
[14] Takeshi K, Goro M, Yoshio W. Propellant feed system of regeneratively cooled scramjet[J]. Journal of Propulsion and Power, 1991, 7(2): 299-301.
[15] Vermaak N, Valdevit L, Evans A G. Materials property profiles for actively cooled panels: an illustration for scramjet applications[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2009, 40(4): 877-890.
[16] Bao W, Li X L, Qin J, et al. Modelling and simulation methodology of channel cooling using hydrocarbon fuel as coolant under supercritical pressures[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2011, 25(9): 969-984.
[17] Walters F M, Buchmann O A. Heat transfer and fluid flow analysis of hydrogen-cooled panels and manifold systems, NASA-CR-66925[R]. Washington, D.C.: NASA, 1971.
[18] Gnielinski V. New equations for heat and mass-transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
[19] Moody L F, Princeton N J. Friction factors for pipe flow [J]. Tansactions of the ASME, 1944, 66(8): 671-684.
[20] Lorenzo V, Natasha V, Frank W Z, et al. A materials selection protocol for lightweight actively cooled panels[J]. Journal of Applied Mechanics, 2008, 75(6): 061022-1-061022-15.
/
〈 | 〉 |