材料工程与机械制造

钛表面阳极氧化处理对TA2/聚醚醚酮(PEEK)粘结性能的影响

  • 徐飞 ,
  • 潘蕾 ,
  • 白云瑞 ,
  • 曹佳梦 ,
  • 陶杰 ,
  • 陶海军 ,
  • 蔡雷
展开
  • 1. 南京航空航天大学 材料科学与技术学院, 江苏 南京 210016;
    2. 江苏呈飞精密合金有限公司, 江苏 南京 212312
徐飞男,硕士研究生。主要研究方向:纤维金属层板、精密薄板表面处理技术。 E-mail:XavierNanJing@gmail.com;潘蕾女,博士,副教授。主要研究方向:先进复合材料。Tel:025-52112626 E-mail:bettypan@nuaa.edu.cn

收稿日期: 2013-07-15

  修回日期: 2013-10-26

  网络出版日期: 2013-11-16

基金资助

国家“863”计划;中央高校基本科研业务费专项资金(NS2012056)

Effects of Titanium Surface Anodization on Adhesive Bonding Properties of TA2/polyetheretherketone(PEEK)

  • XU Fei ,
  • PAN Lei ,
  • BAI Yunrui ,
  • CAO Jiameng ,
  • TAO Jie ,
  • TAO Haijun ,
  • CAI Lei
Expand
  • 1. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Chengfei Precision Alloy Co., Ltd., Nanjing 212312, China

Received date: 2013-07-15

  Revised date: 2013-10-26

  Online published: 2013-11-16

Supported by

National High-tech Research and Development Program of China; The Fundamental Research Funds for the Central Universities (NS2012056)

摘要

为了改善TA2/Cf/PEEK纤维金属混杂层板中TA2/PEEK的界面粘结性能,利用NaTESi恒压阳极氧化法对TA2板进行表面改性。首先通过正交试验对阳极氧化工艺进行优化,对不同处理工艺的TA2板表面进行了XRD、SEM分析以及粗糙度的表征;其次,研究了钛板表面改性对TA2/PEEK界面结合强度及断裂韧性的影响。结合扫描电镜图进行表面粗糙度及剪切强度的极差分析,发现随着阳极氧化时间的增长,表面粗糙度减小,TA2/PEEK接头的单搭剪切强度下降。对不同工艺下单搭接头的拉伸剪切强度进行比较后,确定了利于提高TA2/PEEK界面结合强度的最优工艺为恒压10 V、在35℃下阳极氧化10 min;该种工艺处理后的钛板表面粗糙度为1.34 μm,其表面形貌为纳米颗粒,粒径尺寸为100~200 nm,在阳极氧化时间为10 min、电压为10 V时,其表面纳米颗粒分布最为均匀,该种形貌下制备的TA2/PEEK界面剪切强度达到19 MPa,失效模式为混合破坏;通过载荷-位移曲线、R曲线,对此工艺下TA2/PEEK界面I型层间断裂韧性进行了表征,发现其平均能量释放率为188.1 J/m2,相比于未经表面处理的试样增加了103.1%,阳极氧化工艺处理后的TA2/PEEK界面抗分层能力更好。

本文引用格式

徐飞 , 潘蕾 , 白云瑞 , 曹佳梦 , 陶杰 , 陶海军 , 蔡雷 . 钛表面阳极氧化处理对TA2/聚醚醚酮(PEEK)粘结性能的影响[J]. 航空学报, 2014 , 35(6) : 1724 -1732 . DOI: 10.7527/S1000-6893.2013.0447

Abstract

Surface treatment on titanium sheets by NaTESi anodization at constant voltage is conducted to improve the bonding properties of TA2/polyetheretherketone (PEEK) in TA2/Cf/PEEK laminates. The effects of technical parameters (such as voltage, time and temperature) on the single lap joint shear strength and the surface roughness of TiO2 film are investigated by an orthogonal test. It demonstrates that the most important factor affecting the bonding properties is time. Longer anodization times resuted in lower surface roughness, which contributed to inferior bonding properties. Properties of the TA2 laminate are investigated by XRD and SEM, and the results show that the optimized process which is favorable for the increase of the bonding strength is as follows: anodizing voltage 10 V, anodizing temperature 35℃ and anodizing time 10 min. The surface roughness treated by this method is 1.34 μm and the nano-particles morphology appeares, which the size of the particles is about 100-200 nm. The single lap joint shear strength with these parameters could reach 19 MPa. The resistance to delamination between the titanium sheet and PEEK in this optimized process is measured in a double cantilever beam test. The average energy release rate of the TA2/PEEK interface which was prepared by the method of NaTESi anodization is 188.1 J/m2, which showes an increase of 103.1% compared with the untreated ones. The results indicate that the anodizing process markedly enhance the delamination resistance of TA2/PEEK bonding interface.

参考文献

[1] Cao C X. One generation of material technology, one generation of large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 701-706. (in Chinese) 曹春晓. 一代材料技术,一代大型飞机[J]. 航空学报, 2008, 29(3): 701-706.

[2] Sinmazelik T, Avcu E, Bora M , et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design, 2011, 32(7): 3671-3685.

[3] Reyes G, Kang H. Mechanical behavior of lightweight thermoplastic fiber-metal laminates[J]. Journal of Materials Processing Technology, 2007, 186(1-3): 284-290.

[4] Gao Z Q, Zhong W H, Yang H C, et al. Surface activation methods of Ti and the effects on Ti/CFRP hybrid composite[J]. Acta Materiae Compositae Sinica, 2001, 18(3): 26-29. (in Chinese) 高志强, 仲伟虹, 杨鸿昌, 等. Ti表面处理及其对其层间混杂复合材料Ti/CFRP性能影响[J]. 复合材料学报, 2001, 18(3): 26-29.

[5] Lawcock G, Ye L, Mai Y, et al. The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates[J]. Composites Science and Technology, 1997, 57(1): 35-45.

[6] Matz C. Optimization of the durability of structural titanium adhesive joints[J]. International Journal of Adhesion and Adhesives, 1988, 8(1): 17-24.

[7] Mertens T, Gammel F J, Kolb M, et al. Investigation of surface pre-treatments for the structural bonding of titanium[J]. International Journal of Adhesion and Adhesives, 2012, 34: 46-54.

[8] Molitor P, Barron V, Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review[J]. International Journal of Adhesion and Adhesives, 2001, 21(2): 129-136.

[9] Gao S, Kim J. Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(6): 763-774.

[10] Zhang L, Wang B, Jiao G Q, et al. Influence of fiber bridging on mode I interlaminar fracture toughness of composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 817-825. (in Chinese) 张龙, 王波, 矫桂琼, 等. 纤维桥连对复合材料I型层间断裂韧性的影响[J]. 航空学报, 2013, 34(4): 817-825.

[11] Gong X J, Hurez A, Verchery G. On the determination of delamination toughness by using multidirectional DCB specimens[J]. Polymer Testing, 2010, 29(6): 658-666.

[12] Liu J H, Wu L, Li S M, et al. Preparation and characterization of anodic oxide film on titanium alloy Ti-10V-2Fe-3Al in sodium oxalate electrolyte[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 852-856. (in Chinese) 刘建华, 吴量, 李松梅, 等. 草酸钠体系中Ti-10V-2Fe-3Al钛合金阳极氧化膜的制备与表征[J]. 航空学报, 2010, 31(4): 852-856.

[13] Xu X C, Wang X W, Li H, et al. Effect of alkaline anodization treatment on durability of titanium/epoxy bonded joint[J]. Aeronautical Manufacturing Technology, 1996(4): 8-11.(in Chinese) 徐修成, 王晓蔚, 李虎, 等. 碱性阳极化处理对钛合金/环氧胶接接头耐久性的影响[J]. 航空工艺技术, 1996(4): 8-11.

[14] He P, Chen K, Yu B, et al. Surface microstructures and epoxy bonded shear strength of Ti6Al4V alloy anodized at various temperatures[J]. Composites Science and Technology, 2013, 82: 15-22.

[15] Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketon (PEEK)[J]. Dental Materials, 2012, 28(12): 1280-1283.

[16] de Morais A B. Double cantilever beam testing of multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(12): 1135-1142.

[17] Shokrieh M M, Heidari-Rarani M, Ayatollahi M R. Delamination R-curve as a material property of unidirectional glass/epoxy composites[J]. Materials & Design, 2012, 34: 211-218.

文章导航

/