材料工程与机械制造

复合材料紧固孔分层激光超声量化表征试验

  • 周正干 ,
  • 孙广开 ,
  • 陈秀成 ,
  • 王捷
展开
  • 北京航空航天大学 机械工程及自动化学院, 北京 100191
周正干男,博士,教授,博士生导师。主要研究方向:超声无损检测技术。Tel:010-82338668,E-mail:zzhenggan@buaa.edu.cn;孙广开男,博士研究生。主要研究方向:超声无损检测技术。Tel:010-82313466,E-mail:guangkai.sun@gmail.com

收稿日期: 2013-09-21

  修回日期: 2013-11-06

  网络出版日期: 2013-11-14

基金资助

国家国际科技合作专项(2013DFR70780);航空科学基金(20120951015)

Quantitative Characterization Test of Fastening Hole Delamination in Composites with Laser Ultrasonics

  • ZHOU Zhenggan ,
  • SUN Guangkai ,
  • CHEN Xiucheng ,
  • WANG Jie
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Received date: 2013-09-21

  Revised date: 2013-11-06

  Online published: 2013-11-14

Supported by

International S&T Cooperation Program of China (2013DFR70780); Aeronautical Science Fundation of China (20120951015)

摘要

提出解决飞机复合材料结构紧固孔分层检测问题的途径。基于激光超声技术,进行复合材料紧固孔分层的量化表征试验。制备碳纤维增强复合材料紧固孔试样,根据复合材料中激光超声的激发参量选取原则,利用材料受脉冲激光辐照作用产生的热弹效应激发超声波,提取表征紧固孔区域分层缺陷的超声信号;分析影响缺陷表征准确度的关键因素,发现脉冲激光光斑尺寸(直径1~5 mm)变化对紧固孔分层的表征不产生显著影响;基于穿透法和脉冲反射法进行激光超声C扫描检测,得到紧固孔区域分层缺陷的形状、尺寸和位置特征。研究结果表明,利用激光超声技术的非接触式激发、接收和高分辨力特点,可以准确测得紧固孔区域分层缺陷导致的波反射和衰减,有效表征飞机复合材料结构的紧固孔分层缺陷。

本文引用格式

周正干 , 孙广开 , 陈秀成 , 王捷 . 复合材料紧固孔分层激光超声量化表征试验[J]. 航空学报, 2014 , 35(8) : 2348 -2354 . DOI: 10.7527/S1000-6893.2013.0463

Abstract

An effective method for the detection of fastening hole delamination in composite aeronautical structures is proposed. Tests for the quantitative characterization of drilling-induced delamination in composites are conducted based on the laser ultrasonic technique. A specimen of carbon fiber reinforced plastic material is prepared, and the fastening holes are processed. Ultrasonic waves are generated by the thermo elastic effect of the material as it is illuminated by a pulse laser whose parameters are selected according to the principle of laser ultrasonic generation in composites. Ultrasonic signals that could be used to characterize the subsurface drilling-induced delamination are extracted. Major factors that might influence the characterization precision of the delamination are analyzed, and it can be seen that the dimension of the laser spot size (1-5 mm) has little influence on the characterization of the delamination. Typical C-scan testing of the specimen with laser ultrasonic technique is accomplished based on the transmission and pulse echo method, and the features of morphology, dimension and position of the drilling-induced delamination are obtained. The results prove that based on the advantages of the laser ultrasonic technique (e.g. non-contact generation and detection, high resolution), the drilling-induced delamination in composite aeronautical structures can be characterized effectively by measuring the wave reflection and attenuation induced by the delamination.

参考文献

[1] Tsao C C, Hocheng H. Computerized tomography and C-scan for measuring delamination in the drilling of composite materials using various drills[J]. International Journal of Machine Tools & Manufacture, 2005, 45(11): 1282-1287.

[2] Tsao C C, Hocheng H, Chen Y C. Delamination reduction in drilling composite materials by active backup force [J]. CIRP Annals-Manufacturing Technology, 2012, 61(1): 91-94.

[3] Grilo T J, Paulo R M F, Silva C R M, et al. Experimental delamination analyses of CFRPs using different drill geometries[J]. Composites, 2013, 45(1): 1344-1350.

[4] Khashaba U A. Delamination in drilling GFR-thermoset composites[J]. Composite Structures, 2004, 63(3): 313-327.

[5] Davim J P, Rubio J C, Abrao A M. A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates[J]. Composite Science and Technology, 2007, 67(9): 1939-1945.

[6] Robert E, Green J. Non-contact ultrasonic techniques[J]. Ultrasonics, 2004, 42(1): 9-16.

[7] He C F. Laser ultrasonic techniques and applications. Beijing: Department of Engineering Mechanics, Tsinghua University, 1995. (in Chinese) 何存富. 激光超声技术及其应用研究. 北京: 清华大学工程力学系, 1995.

[8] Geng R S, Zheng Y. Prospective view on the application of nondestructive testing in air industry and possible challenges[J]. Nondestructive Testing, 2002, 24(1): 1-5. (in Chinese) 耿荣生, 郑勇. 航空无损检测技术发展动态及面临的挑战[J]. 无损检测, 2002, 24(1): 1-5.

[9] Wright W M D, Hutchins D A, Gachagan A, et al. Polymer composite material characterization using a laser/air-transducer system[J]. Ultrasonics, 1996, 34(8): 825-833.

[10] Audoin B. Non-destructive evaluation of composite materials with ultrasonic waves generated and detected by lasers[J]. Ultrasonics, 2002, 40(1): 735-740.

[11] Liu S P, Guo E M, Liu F F, et al. Evaluation of defects in carbon fiber reinforced composites by laser ultrasonic technique[J]. Nondestructive Testing, 2007, 29(7): 396-398. (in Chinese) 刘松平, 郭恩明, 刘菲菲, 等. 激光超声检测碳纤维增强树脂基复合材料的缺陷评估技术研究[J]. 无损检测, 2007, 29(7): 396-398.

[12] Pan Y D, Qian M L, Xu W J, et al. Residual stress profiling of an aluminum alloy by laser ultrasonics[J]. Acta Acustica, 2004, 29(3): 254-257. (in Chinese) 潘永东, 钱梦騄, 徐卫疆, 等. 激光超声检测铝合金材料的残余应力分布[J]. 声学学报, 2004, 29(3): 254-257.

[13] Dubois M, Drake T E. Evolution of industrial laser-ultrasonic systems for the inspection of composites[J]. Nondestructive Testing and Evaluation, 2011, 26(3): 213-228.

[14] Dubois M, Drake T E, Osterkamp M. Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology[J]. Journal of the Japanese Society for Non-Destructive Inspection, 2008, 57(1): 11-20.

[15] Zhou Z G, Sun G K, Li Z, et al. Application of laser ultrasonic testing technique on the detection of composite structures[J]. Journal of Harbin University of Science and Technology, 2012, 17(6): 119-122. (in Chinese) 周正干, 孙广开, 李征, 等. 激光超声检测技术在复合材料检测中的应用[J]. 哈尔滨理工大学学报, 2012, 17(6): 119-122.

[16] Dubois M, Lorraine P W, Filkins R J, et al. Experimental verification of the effects of optical wavelength on the amplitude of laser generated ultrasound in polymer-matrix composites[J]. Ultrasonics, 2002, 40(1): 809-812.

[17] Pavel A, Alexey K, Sridhar K, et al. Imaging of damage in sandwich composite structures[J]. Composites, 2004, 35(6): 557-562.

[18] Xu N, Zhou Z G, Liu W P, et al. Ultrasonic phased array inspection method for the corner of L-shaped components[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 419-425. (in Chinese) 徐娜, 周正干, 刘卫平, 等. L型构件R区的超声相控阵检测方法[J]. 航空学报, 2013, 34(2): 419-425.

文章导航

/