电子与控制

区域杂波估计的多目标跟踪方法

  • 瑚成祥 ,
  • 刘贵喜 ,
  • 董亮 ,
  • 王明 ,
  • 张菁超
展开
  • 西安电子科技大学 机电工程学院, 陕西 西安 710071
瑚成祥男,硕士研究生。主要研究方向:多目标跟踪,跟踪滤波。 E-mail:huchengxiang013@163.com;刘贵喜男,博士,教授,博士生导师。主要研究方向:信息融合,目标跟踪,计算机视觉。Tel:13700296049 E-mail:gxliu@xidian.edu.cn

收稿日期: 2013-05-30

  修回日期: 2013-10-30

  网络出版日期: 2013-11-06

基金资助

国家级项目(9140A******13DZ01)

Region Clutter Estimation Method for Multi-target Tracking

  • HU Chengxiang ,
  • LIU Guixi ,
  • DONG Liang ,
  • WANG Ming ,
  • ZHANG Jingchao
Expand
  • School of Mechano-electronic Engineering, Xidian University, Xi'an 710071, China

Received date: 2013-05-30

  Revised date: 2013-10-30

  Online published: 2013-11-06

Supported by

National Level project (9140A******13DZ01)

摘要

高斯粒子概率假设密度(PHD)滤波往往假定杂波密度参数已知,这种做法对于实际应用是不现实的。此外,杂波的参数值通常依赖于环境条件,可能随时间发生变化。因此,多目标跟踪算法中需要实时准确估计杂波密度的参数。基于此,提出了一种多目标跟踪的区域杂波估计方法。首先根据量测信息在线估计出场景中的杂波数目,然后估计落入目标附近感兴趣区域的杂波数,并估计每个目标感兴趣区域杂波强度。仿真结果表明,在复杂场景下算法的跟踪性能明显优于未进行杂波估计的多目标跟踪算法,提高了跟踪的实时性和跟踪精度。

本文引用格式

瑚成祥 , 刘贵喜 , 董亮 , 王明 , 张菁超 . 区域杂波估计的多目标跟踪方法[J]. 航空学报, 2014 , 35(4) : 1091 -1101 . DOI: 10.7527/S1000-6893.2013.0439

Abstract

Gaussian mixture particle probability hypothesis density (PHD) filter often assumes that the clutter density parameters are known. This method is impractical for real applications. In addition, the parameter values of the clutter points are usually dependent on environmental conditions, and they may change over time. Therefore, it is desirable for multiple-target tracking algorithm in real time to estimate the clutter density parameters. In this paper, a method of the clutter estimation about multi-target tracking is presented. Firstly, we estimate the number of clutter points in the scene online. Secondly, we estimate the clutter number and intensity in each region of interest. Simulation results show that its tracking performance is much better than those of multiple-target tracking algorithms which have not estimated the clutter intensity in complex situations and that it improves the real-time tracking and tracking accuracy.

参考文献

[1] Mahler R P S, Maroulas V. Tracking spawning objects[J]. IET Radar, Sonar & Navigation, 2013, 7(3): 321-331.

[2] Mahler R P S. Multi-target Bayes filtering via first-order multi-target moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.

[3] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.

[4] Chen X, Tharmarasa R, Pelletier M. Integrated clutter estimation and target tracking using poisson point processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1210-1235.

[5] Luo S H, Xu H, Xu Y. et al. Improved MMPHD method for tracking maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1296-1304.(in Chinese) 罗少华, 徐晖, 徐洋, 等.改进的MMPHD机动目标跟踪方法[J]. 航空学报, 2012, 33(7): 1296-1304.

[6] Mahler R P S. CPHD and PHD filters for unknown backgrounds, Ⅱ: Multi-target filtering in dynamic cluter//Sensors and Systems for Space Applications Ⅲ In Proceedings of SPIE, 2009, 7330: 73300L-1-7300L-12.

[7] Mahler R P S.CPHD and PHD filters for unknown backgrounds, I: Dynamic data clustering//Sensors and Systems for Space Applications Ⅲ In Proceedings of SPIE, 2009, 7330: 73300K-1-73300K-12.

[8] Lian F, Han C Z, Liu W F.Estimating unknown clutter intensity for PHD filter[J].IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078.

[9] Zhou C X, Liu G X. A multi-target tracking algorithm under unknown measurement noise distribution[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2228-2237. (in Chinese) 周承兴, 刘贵喜. 未知测量噪声分布下的多目标跟踪算法[J]. 航空学报, 2010, 31(11): 2228-2237.

[10] Yan X X, Han C Z. Multiple target tracking based on online estimation of clutter intensity[J]. Control and Decision., 2012, 27(4): 507-512. (in Chinese) 闫小喜, 韩崇昭. 基于杂波强度在线估计的多目标跟踪算法[J]. 控制与决策, 2012, 27(4): 507-512.

[11] Mahler R P S. Engineering statistics for multi-object tracking//Signal and Data Processing of Small Targets In Proceedings of SPIE, 2001: 53-60.

[12] Yang W, Fu Y, Li X. Multiple-model Bayesian filtering with random finite set observation[J]. Systems Engineering and Electronics, 2012, 23(3): 364-371.

[13] Ristic B, Clark D, Vo B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668.

[14] Moller J. Markov chain Monte Carlo and spatial point processes[M]. Barndorff-Nielsen: Aalborg Universitetsforlag, 1999: 141-172.

[15] Clark D E, Bell J. Convergence results for the particle PHD filter[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2660.

[16] Wu N, Chen L. Adaptive Kalman filtering for tragectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1960-1971. (in Chinese) 吴楠, 陈磊. 高超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8): 1960-1971.

[17] Wen L L, Ying M J, Jun P D. Gaussian mixture PHD filter for multi-sensor multi-target tracking with registration errors[J]. IEEE Transactions on Signal Processing, 2013, 93(1): 86-99.

[18] Clark D, Ba-Tuong Vo, Ba-Ngu Vo. Gaussian particle implementations of probability hypothesis density filters[J]. IEEE Aerospace Conference, 2007: 1-11.

[19] Mahler R P S.Statistical multisouce-multitarget information fusion[M].Norwood, MA: Artech House, 2007: 609-623.

[20] Vo B N. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.

[21] Schuhmacher D, Vo B T, Vo B N. A cons-istent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457.

[22] Georgescu R, Willett P. The GM-CPHD tracker applied to real and realistic multistatic sonar data sets[J]. IEEE Transactions on Oceanic Engineering, 2012, 37(2): 220-235.

文章导航

/