整体叶盘叶型电解加工流场设计及实验
收稿日期: 2013-07-20
修回日期: 2013-09-06
网络出版日期: 2013-11-04
基金资助
国家自然科学基金(51005119);江苏省自然科学基金(BK2012387)
Design and Experiment of Electrolyte Flow Mode in Electrochemical Machining of Blisk
Received date: 2013-07-20
Revised date: 2013-09-06
Online published: 2013-11-04
Supported by
National Natural Science Foundation of China (51005119); Jiangsu Province Natural Science Foundation (BK2012387)
电解加工(ECM)是航空发动机整体叶盘制造的主要技术之一,其电解液流场稳定性是影响电解加工精度和表面质量的核心因素。本文在分析原有的二维流场基础上,针对流体在不同流道截面下的流场状态,提出了一种三维复合电解液流场模式,即三股电解液分别从毛坯进气边、叶盆叶根、叶背叶根流入,由排气边交汇流出。采用有限元法对三维复合流场及两类二维流场开展仿真分析,分析结果表明三维复合流场改善了流道突变区域流场状态,有效抑制了二维流场的流场缺陷,有助于提高流场稳定性。对加工区液体流态进行了判断,其结果显示三维复合流场可以满足电解加工要求。开展了3种流场模式的加工速度比较实验,三维复合流场达到的进给速度最高,较二维流场可显著提升加工效率。采用三维复合流场开展了多叶片扇段加工,获得了较好的重复精度与表面质量。
刘嘉 , 徐正扬 , 万龙凯 , 朱荻 , 朱栋 . 整体叶盘叶型电解加工流场设计及实验[J]. 航空学报, 2014 , 35(1) : 259 -267 . DOI: 10.7527/S1000-6893.2013.0380
Electrochemical machining (ECM) is an important processing technology in aerospace industry to produce blisks. The stability of the flow field is a critical factor which affects the ECM process accuracy and the surface quality of the blades. This paper analyzes the insufficient fluid of the traditional flow mode in electrochemical machining of blisks. A new electrolyte flow mode, the "3D complex flow mode", is proposed to machine blisks. There are three electrolyte inlets in this flow mode, which allow flows into the leading edge of the blade, the root of the concave blade and the root of the convex blade. The electrolyte outlet is near the exhaust edge of the blade. The flow mode is analyzed by the finite element method. The results demonstrate that flow field stability is enhanced with this flow mode. An evaluation of the flow state in the processing area indicates that this mode is able to meet the requirements of ECM. Experimental investigations are carried out in order to evaluate the feasibility of the flow mode. The results show that machining efficiency is improved significantly with this flow mode. The processing experiment for the section part of a blisk is carried out by using the 3D complex flow mode. The test specimens exhibit better processing repeatability and surface quality.
Key words: electrochemical machining; aircraft engines; blisk; flow fields; FEM simulation
[1] Xu J W, Yun N Z, Wang J Y, et al. Elecrtochemical machining technique[M]. Beijing: National Defence Industry Press, 2008: 3-5. (in Chinese) 徐家文, 云乃彰, 王建业, 等. 电化学加工技术[M]. 北京: 国防工业出版社, 2008: 3-5.
[2] Rajurkar K P, Sundaram M M, Malshe A P. Review of electrochemical and electrodischarge machining[J]. Procedia CIRP, 2013, 6(1): 13-26.
[3] Li Z Y, Niu Z W. Convergence analysis of the numerical solution for cathode design of aero-engine blades in electrochemical machining[J]. Chinese Journal of Aeronautics, 2007, 20(6): 570-576.
[4] Deconinck D, Damme S V, Deconinck J. A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process[J]. Electrochimica Acta, 2012, 60(2): 321-328.
[5] Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining[J]. Science, 2000, 289(5476): 98-101.
[6] Bhattacharyya B, Malapati M, Munda J, et al. Influence of tool vibration on machining performance in electrochemical micro machining of copper[J]. International Journal of Machine Tools & Manufacture, 2007, 47(2): 335-342.
[7] Qu N S, Fang X L, Li W, et al. Wire electrochemical machining with axial electrolyte flushing for titanium alloy[J]. Chinese Journal of Aeronautics, 2013, 26(1): 224-229.
[8] Judal K B, Yadava V. Cylindrical electrochemical magnetic abrasive machining of AISI-304 stainless steel[J]. Materials and Manufacturing Processes, 2013, 4(28): 449-456.
[9] Zhu D, Zhu D, Xu Z Y. Simulation of cathode modification for electrochemical machining of blade based on neural network[J]. Journal of South China University of Technology: Natural Science Edition, 2010, 38(2): 60-66. (in Chinese) 朱栋, 朱荻, 徐正扬. 基于神经网络的叶片电解加工阴极修正仿真[J]. 华南理工大学学报: 自然科学版, 2010, 38(2): 60-66.
[10] Tang L, Guo Y F. Experimental study of special purpose stainless steel on electrochemical machining of electrolyte composition[J]. Materials and Manufacturing Processes, 2013, 28(4): 457-462
[11] Xu Z Y, Xu Q, Zhu D, et al. A high efficiency electrochemical machining method of blisk channels[J]. CIRP Annals, 2013, 62(1): 187-190.
[12] Bumann M, Kraus J, Bayer E. An integrated cost-effective approach to blisk manufacturing[J]. Proceedings of 17th Symposium on Air Breathing Engines, 2005.
[13] Xu Q, Xu Z Y, Zhu D, et al. Optimization of cathode multidimensional movement path in electrochemical machining of blisk channels[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1548-1554. (in Chinese) 徐庆, 徐正扬, 朱荻, 等. 整体叶盘通道电解加工电极多维运动轨迹优化[J]. 航空学报, 2011, 32(8): 1548-1554.
[14] Zhu Y W, Xu J W. Shaping law and process study on combined wobbling feeds for electrochemical contour evolution machining integral component parts[J]. Chinese Journal of Mechanical Engineering, 2008, 44(12): 280-286. (in Chinese) 朱永伟, 徐家文. 复合平面摆动展成电解加工整体构件异形面的成形分析及应用[J]. 机械工程学报, 2008, 44(12): 280-286.
[15] Wei S H, Xu Z Y, Sun L Y, et al. Optimization of cathode feed direction in radial feed electrochemical machining[J]. Electromachining & Mould, 2012, 299(4): 21-25. (in Chinese) 韦树辉, 徐正扬, 孙伦业, 等. 整体叶盘叶栅通道电解加工工具电极进给方向优化设计[J]. 电加工与模具, 2012, 299(4): 21-25.
[16] Zhu D, Zhu D, Xu Z Y, et al. Optimal design of the sheet cathode using W-shaped electrolyte flow mode in ECM[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(1-4): 147-156.
[17] Zhang M Q, Fu J Y. Application analysis of precise vibrating electrochemical machining in high-temperature alloy disk[J]. Aeronautical Manufacturing Technology, 2009(22): 26-29. (in Chinese) 张明歧, 傅军英. 高温合金整体叶盘精密振动电解加工方法的应用分析[J]. 航空制造技术, 2009(22): 26-29.
[18] Wang F J. Analysis of computational fluid dynamics—the principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 120-124. (in Chinese) 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 120-124.
/
〈 | 〉 |