固体力学与飞行器总体设计

含局部非线性的月球探测器软着陆动力学模型降阶分析

  • 董威利 ,
  • 刘莉 ,
  • 周思达
展开
  • 北京理工大学 宇航学院 飞行器动力学与控制教育部重点实验室, 北京 100081
董威利男,博士研究生。主要研究方向:结构动力学模型降阶。Tel:010-68913290E-mail:dwl.willie@gmail.com;刘莉女,博士,教授,博士生导师。主要研究方向:飞行器总体设计、飞行器结构分析与设计、飞行动力学与控制。Tel:010-68914534E-mail:liuli@bit.edu.cn;周思达男,博士,讲师,硕士生导师。主要研究方向:飞行器结构动力学分析、时变结构动力学系统分析与辨识。Tel:010-68918752E-mail:zhousida@bit.edu.cn

收稿日期: 2013-08-01

  修回日期: 2013-10-26

  网络出版日期: 2013-11-01

基金资助

北京理工大学基础研究基金(20120142009)

Model Reduction Analysis of Soft Landing Dynamics for Lunar Lander with Local Nonlinearities

  • DONG Weili ,
  • LIU Li ,
  • ZHOU Sida
Expand
  • Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2013-08-01

  Revised date: 2013-10-26

  Online published: 2013-11-01

Supported by

Beijing Institute of Technology Foundation for Basic Research (20120142009)

摘要

为准确预估探测器着陆冲击过程的动力学响应,采用非线性有限元方法建立了探测器软着陆动力学模型,能够较全面地反映出各种非线性因素。针对非线性有限元求解耗时长的弱点,考虑到探测器的局部非线性特性,利用广义动力缩聚(GDR)方法建立了月球探测器中心体的降阶模型。提出了一种基于脉冲响应函数的模态截断准则,在广义动力缩聚方法的基础上筛选少数几阶模态影响系数(MIC)较高的模态表征中心体的加速度响应,能够进一步降低模型的阶数。将降阶的中心体模型与含非线性的缓冲机构连接后进行的软着陆动力学分析能够准确而快速地预估探测器测点的加速度响应,与非降阶模型对比,计算时间缩短了75.5%,加速度响应的相对峰值误差控制在5%以内。数值仿真表明,广义动力缩聚方法能够有效地解决传统非线性有限元方法求解效率低的问题,本文所提模态截断准则的优点是适于求解模态密集问题并且与系统的输入输出无关。

本文引用格式

董威利 , 刘莉 , 周思达 . 含局部非线性的月球探测器软着陆动力学模型降阶分析[J]. 航空学报, 2014 , 35(5) : 1319 -1328 . DOI: 10.7527/S1000-6893.2013.0440

Abstract

In order to accurately predict the dynamic response of a lunar lander during its landing process, a dynamics model for the lunar lander is built using the nonlinear finite element method. This method considers comprehensively various nonlinear factors but is time consuming. Aiming at solving this disadvantage, the generalized dynamic reduction (GDR) method is adopted to build an order reduced model for the center body of the lunar lander which takes into consideration the lander's local nonlinearities and a new modal truncation criterion is proposed based on the impulse response function. By means of this criterion, the acceleration of the center body can be characterized by selecting just a few normal modes with high model influence coefficient (MIC) based on GDR method, this further reduces the order of the center body. In a case study on soft landing dynamics, the order reduced center body is jointed with the nonlinear landing gear. Compared with the original non-reduced FE model, up to 75.5% computational time is saved using the modal truncation criterion while the relative peak error of acceleration is kept below 5%. From the results it can be concluded that the GDR method works excellently for enhancing the simulation efficiency of lunar landing and the proposed criterion has the advantage of solving modal-denseness systems with independence of input and output.

参考文献

[1] Lavender R E. Equations for two-dimensional analysis of touchdown dynamics of spacecraft with hinged legs including elastic, damping, and crushing effects, N 66 23668. Huntsville: George C. Marshall Space Flight Center, 1963.

[2] Nohmi M, Miyahara A. Modeling for lunar lander by mechanical dynamics software, AIAA-2005-6416. Reston: AIAA, 2005.

[3] Otto O R, Laurenson R M, Melliere R A, et al. Analyses and limited evaluation of payload and legged landing system structures for the survivable soft landing of instrument payloads, NASA CR-111919. Washington D.C.: NASA, 1971.

[4] Chen J B, Nie H. Overloading of landing based on the deformation of the lunar lander[J]. Chinese Journal of Aeronautics, 2008, 21(1): 43-47.

[5] Wan J L, Nie H, Chen J B, et al. Impact response analysis of payloads of lunar lander for lunar landing[J]. Journal of Astronautics, 2010, 31(11): 2456-2464. (in Chinese) 万峻麟, 聂宏, 陈金宝, 等. 月球着陆器有效载荷着陆冲击响应分析[J]. 宇航学报, 2010, 31(11): 2456-2464.

[6] Zhao J F. A study on soft-landing dynamics and environment of lunar lander. Beijing: School of Aerospace Engineering, Beijing Institute of Technology, 2011. (in Chinese) 赵俊锋. 月球探测器软着陆动力学分析及力学环境研究. 北京: 北京理工大学宇航学院, 2011.

[7] Liang D P, Chai H Y, Zeng F M. Nonlinear finite element modeling and simulation for landing leg of lunar lander[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 1-5. (in Chinese) 梁东平, 柴洪友, 曾福明. 月球着陆器着陆腿非线性有限元建模与仿真[J]. 北京航空航天大学学报, 2013, 39(1): 1-5.

[8] Kim K O, Anderson W J. Generalized dynamic reduction in finite element dynamic optimization[J]. AIAA Journal, 1984, 22(11): 1616-1617.

[9] Laurenson R, Melliere R, Mcgehee J. Analysis of legged landers for the survivable soft landing of instrument payloads[J]. Journal of Spacecraft and Rockets, 1972, 10(3): 208-214.

[10] William F R. Apollo experience report-lunar module landing gear subsystem, NASA TN D-6850. Washington D.C.: NASA, 1972.

[11] Liang D P, Chai H Y. Lunar soil constitutive model and finite element modeling for landing impact simulation[J]. Spacecraft Engineering, 2012, 21(1): 18-24. (in Chinese) 梁东平, 柴洪友. 着陆冲击仿真月壤本构模型及有限元建模[J]. 航天器工程, 2012, 21(1): 18-24.

[12] Guyan R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2): 380.

[13] Zhang J. Some direct and inverse dynamic problems on damped spacecraft structure. Harbin: Department of Astronautics Engineering and Mechanics, Harbin Institute of Technology, 2010. (in Chinese) 张静. 航天器阻尼结构的若干动力学正问题和反问题研究. 哈尔滨: 哈尔滨工业大学航天工程与力学系, 2010.

[14] Sundararajan P, Noah S T. An algorithm for response and stability of large order non-linear systems - application to rotor systems[J]. Journal of Sound and Vibration, 1998, 214(4): 695-723.

[15] Hughes P C. Modal identities for elastic bodies, with application to vehicle dynamics and control[J]. Journal of Applied Mechanics, 1980, 47(1): 177-184.

[16] Hughes P C, Skelton R E. Modal truncation for flexible spacecraft[J]. Guidance and Control, 1981, 4(3): 291-297.

[17] Lee A, Tsuha W S. Model reduction methodology for articulated, multiflexible body structures[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 69-75.

[18] Hughes P C, Skelton R E. Controllability and observability for flexible spacecraft[J]. Guidance and Control, 1980, 3(5): 452-459.

[19] Skelton R E, Gregory C Z. Measurement feedback and model reduction by modal cost analysis//Proceedings of the 1979 Joint Automatic Control Conference. New York: American Institude Chemical Engineers, 1979, 17(21): 211-218.

[20] Moore B C. Principal component analysis in linear systems: controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1): 17-32.

[21] Liu Z Y. Study on modeling theory and simulation technique for rigid-flexible coupling systems dynamics. Shanghai: Department of Engineering Mechanics, Shanghai Jiao Tong University, 2008. (in Chinese) 刘铸永. 刚-柔耦合系统动力学建模理论与仿真技术研究. 上海: 上海交通大学工程力学系, 2008.

[22] Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria [J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.

文章导航

/