流体力学与飞行力学

扰流板对内埋导弹偏航姿态角的影响

  • 管德会 ,
  • 蔡为民
展开
  • 中航工业沈阳飞机设计研究所, 辽宁 沈阳 110035
管德会男,硕士,高级工程师。主要研究方向:飞机气动布局设计、气动力特性分析。Tel:024-26784987 E-mail:guandehuigou@tom.com;蔡为民男,硕士,研究员。主要研究方向:无人机总体设计、无人机气动布局设计。Tel:024-86367861 E-mail:cai_weimin@126.com

收稿日期: 2013-05-23

  修回日期: 2013-10-12

  网络出版日期: 2013-10-30

基金资助

国家级项目

Spoiler’s Effect on the Yawing Attitude Angle of the Missile in the Bay

  • GUAN Dehui ,
  • CAI Weimin
Expand
  • AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2013-05-23

  Revised date: 2013-10-12

  Online published: 2013-10-30

Supported by

National Level Project

摘要

在内埋武器舱前缘设计扰流板进行流动控制,可改善内埋导弹分离过程的偏航力矩特性,从而使弹头反向舱门,保证分离航向安全。为了研究该问题,通过理论分析在内埋武器舱前缘设计了不同高度的扰流板;通过部件测力风洞试验研究了不同高度扰流板对舱内流型、内埋导弹偏航力矩特性的影响,进而分析了扰流板对内埋导弹偏航分离特性的影响;通过轨迹捕获风洞试验验证了分离偏航姿态角特性分析的可靠性。研究结果表明:在内埋武器舱前缘设计一定高度的扰流板可以有效控制舱内流型,改善内埋导弹分离的航向气动特性,提高分离航向安全性。

本文引用格式

管德会 , 蔡为民 . 扰流板对内埋导弹偏航姿态角的影响[J]. 航空学报, 2014 , 35(4) : 942 -947 . DOI: 10.7527/S1000-6893.2013.0428

Abstract

A number of spoilers are designed in the leading edge of the weapons bay which may possibly control the flow and improve the yawing moment characteristic in the missile separating course so as to force the missile's head to reverse for the safety of the separation yawing. To study the problem, spoilers of different heights are built in the leading edge of the weapons bay through theoretical analysis and a wind tunnel test is conducted to measure the forces acting on the parts so as to study the spoilers' effect on the flow patterns in the bay and the missile's yawing moment characteristics. Furthermore, the spoilers' effect on the missile's yawing separation characteristics is analyzed, and the credibility of the separation yawing attitude angle characteristic analysis is validated by a track capture wind tunnel test. The result shows that designing spoilers with certain heights in the leading edge of the weapons bay can effectively control the flow patterns in the bay, improve the missile's yawing aerodynamic characteristic, and improve the separating yawing safety.

参考文献

[1] Wu J F, Luo X F, Fan Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1840-1845.(in Chinese) 吴继飞, 罗新福, 范召林.内埋式弹舱流场特性及武器分离特性改进措施[J].航空学报, 2009, 30(10): 1840-1845.

[2] Feng Q, Cui X C. Study on integrated flow control for weapons bay of flying wing configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 781-787.(in Chinese) 冯强, 崔晓春.飞翼布局武器舱综合流动控制技术研究[J].航空学报, 2012, 33(5): 781-787.

[3] Yang D G, Fan Z L, Li J Q, et al. Studies on flow characteristics of cavity by numerical simulation and wind tunnel test[J]. Acta Aerodynamica Sinica, 2009, 27(3): 378-383.(in Chinese) 杨党国, 范召林, 李建强, 等.弹舱流动特性数值模拟及风洞试验研究[J].空气动力学学报, 2009, 27(3): 378-383.

[4] Li J, Li T, Zhang Q F. The mechanism and control of a open cavity flow[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 80-83.(in Chinese) 黎军, 李天, 张群峰.开式流动舱体的流动机理与控制[J]. 实验流体力学, 2008, 22(1): 80-83.

[5] Wu J F, Tao Y, Fan Z L, et al. Analysis of the effect of the modification at the trailing edge on cavity flow characteristics[J]. Acta Aerodynamica Sinica, 2010, 28(2):197-202.(in Chinese) 吴继飞, 陶洋, 范召林, 等.后缘修型对空腔流场特性影响分析[J].空气动力学学报, 2010, 28(2): 197-202.

[6] Luo X F, Fan Z L. The firs modern experimental aerodynamics of corpus//Experimental Investigation on Internal Weapon bay Flow Characteristics and Its Flow Control. Beijing: Atomic Press, 2007.

[7] Zhang N, Alvi F S, Alkislar M B, et al.Aeroacoustic properties of supersonic cavity flow and their control, AIAA-2003-3101. Reston: AIAA, 2003.

[8] Raman G, Kibens V. Active flow control using integrated powered resonance tube actuators, AIAA-2001-3024. Reston: AIAA, 2001.

[9] Grove J E, Birkbeck R M, Kreher J M. Acoustic and separation characteristics with bay leading edge blowing, AIAA-2000-1904. Reston: AIAA, 2000.

[10] Smith B R, Welterlen T J, Maines B H, et al. Weapons bay acoustic suppression from rod spoilers, AIAA-2002-0662. Reston: AIAA, 2002.

[11] Cattafesta L, Williams D R, Rowley C W, et al. Review of active control of flow induced cavity resonance, AIAA-2003-3567. Reston: AIAA, 2003.

[12] Liu Y. Fluid dynamica analysis on missile launching and separating from weapon bay. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.(in Chinese) 刘瑜. 内埋式弹舱武器发射分离过程研究.南京: 南京航空航天大学, 2010.

[13] Zhang B B. Numerical simulation and control of cavity flow. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.(in Chinese) 张宝兵. 空腔流动的机理模拟与控制. 南京: 南京航空航天大学, 2011.

[14] Wang W. Aerodynamic studies and simulation of missiles internal. Harbin: Harbin Engineering University, 2011.(in Chinese) 王巍. 导弹内埋气动特性研究与仿真. 哈尔滨: 哈尔滨工业大学, 2011.

[15] Huang X H, Luo X F, Yu Z S. Design & development of a new captive trajectory simulation system in FL-24 wind tunnel[J]. Acta Aerodynamica Sinica, 2008, 26(2): 145-149.(in Chinese) 黄叙辉, 罗新福, 于志松.FL-24风洞新型捕获轨迹系统设计与发展[J].空气动力学学报, 2008, 26(2): 145-149.

[16] Yu Z S, Wang F X, Luo X F. Investigation of two special CTS test techniques[J].Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 49-53.(in Chinese) 于志松, 王发祥, 罗新福. 两种特殊CTS试验技术的研究[J]. 流体力学试验与测量, 2004, 18(4): 49-53.

文章导航

/