电子与控制

调频连续波激光雷达目标相对距离及径向速度信息提取方法

  • 杜小平 ,
  • 宋一铄 ,
  • 曾朝阳
展开
  • 1. 装备学院 航天指挥系, 北京 101416;
    2. 装备学院 研究生院, 北京 101416;
    3. 装备学院 光电装备系, 北京 101416
杜小平 女,博士,教授,博士生导师。主要研究方向:空间光学测量。Tel:010-66364643 E-mail:dxp8600@163.com;宋一铄 男,博士研究生。主要研究方向:光电探测器建模与应用。E-mail:stephensong1005@sina.com.cn;曾朝阳 男,博士,副教授。主要研究方向:光电探测系统设计。E-mail:cyzeng@139.com

收稿日期: 2013-05-20

  修回日期: 2013-10-08

  网络出版日期: 2013-10-24

基金资助

部级项目

Methods for Relative Distance and Radial Velocity Information Extraction in LFM/CW Laser Radar

  • DU Xiaoping ,
  • SONG Yishuo ,
  • ZENG Zhaoyang
Expand
  • 1. Department of Aerospace Command, Academy of Equipment, Beijing 101416, China;
    2. Graduate School, Academy of Equipment, Beijing 101416, China;
    3. Department of Photoelectric Equipment, Academy of Equipment, Beijing 101416, China

Received date: 2013-05-20

  Revised date: 2013-10-08

  Online published: 2013-10-24

Supported by

Ministry Level Project

摘要

利用线性调频连续波(LFM/CW)激光雷达进行测量时,相对运动引起的多普勒效应和信息输出延迟都会造成测量结果偏差。分析了多普勒效应和信息输出延迟对测量的影响,提出了基于偏差抵消原理的相对距离及径向速度信息提取方法,根据测量任务需求对该方法和基于二维傅里叶变换的信息提取方法进行了仿真比较。结果表明:基于偏差抵消的信息提取方法不仅可以在相对径向速度未知的情况下准确提取目标相对距离信息,更可在每个调频周期结束后给出测距结果从而提高测距实时性;相比基于二维傅里叶变换的信息提取方法,当相对径向速度小于750 m/s时,基于偏差抵消的信息提取方法可使得测速偏差减小一个数量级。

本文引用格式

杜小平 , 宋一铄 , 曾朝阳 . 调频连续波激光雷达目标相对距离及径向速度信息提取方法[J]. 航空学报, 2014 , 35(2) : 523 -531 . DOI: 10.7527/S1000-6893.2013.0409

Abstract

When using the LFM/CW laser radars, the relative motion between a target and the radar causes the Doppler effect and information output delay which may result in measurement errors. In this paper, the so-caused measurement errors are analyzed. Based on the idea of error cancellation, a new method for information extraction is presented. Simulations are performed to compare this new method with the method based on 2-dimentional FFT (2D-FFT). The results show that the new method can extract accurate relative distance information in every modulation period while the relative radial velocity information is unknown. Compared with the 2D-FFT based method, the new method decreases the errors in velocity measurement by one order of magnitude when the relative radial velocity is less than 750 m/s.

参考文献

[1] Goddard Space Flight Center. On-orbit satellite servicing study project report[R]. National Aeronautics and Space Administration, 2010.

[2] Ruel S, Luu T, Berube A. Space shuttle testing of the TriDAR 3D rendezvous and docking sensor[J]. Journal of Field Robotics, 2012, 29(4): 535-553.

[3] Sellmaier F, Spurmann J, Gully S, et al. On-orbit servicing mission: challenges and solutions for spacecraft operations[C]//AIAA SpaceOps 2010 Conference[R]. Reston: AIAA, 2010: 1-11.

[4] Miller K L, Masciarelli J, Rohrschneider R, et al. Critical advancement in telerobotic servicing vision technology[C]//AIAA Space 2010 Conference & Exposition[R]. Reston: AIAA, 2010: 1-9.

[5] Stettner R. Compact 3D flash LIDAR video cameras and applications[J]. SPIE, 2010, 7684, 768405.

[6] Dai Y J. Principles of laser radar[M]. Beijing: National Defense Industry Press, 2002: 135-139.(in Chinese) 戴永江.激光雷达原理[M]. 北京: 国防工业出版社, 2002: 135-139.

[7] Jiang X S, Chen J X. Laser radar and its applications[J]. Journal of Jiamusi University: Natural Science dition, 2000, 18(1): 93-96.(in Chinese) 姜兴山, 陈建新. 激光雷达及其应用[J]. 佳木斯大学学报: 自然科学版, 2000, 18(1): 93-96.

[8] Stann B, Giza M, Robinson D, et al. A scannerless ladar using a laser diode illuminator and FM/CW radar principles[J]. SPIE, 1999, 3707: 421-431.

[9] Zhang X Y. On the research of LFM/CW laser radar detection for moving targets[D]. Beijing: Academy of Equipment, 2009.(in Chinese) 张晓永. LFM/CW激光雷达运动目标检测技术研究[D]. 北京: 装备学院, 2009.

[10] Zeng Z Y, Zhang X Y Jia X. Measurement of linear frequency-modulated continuous-wave laser radar[J]. Laser & Optoelectronics Progress, 2011, 48(2): 80-86.(in Chinese) 曾朝阳, 张晓永, 贾鑫. 线性调频连续波激光雷达测量方法研究[J]. 激光与光电子学进展, 2011, 48(2): 80-86.

[11] Wang Q. On the reception technology of LFM/CW laser rangefinder[D]. Beijing: Academy of Equipment, 2008.(in Chinese) 王俏. LFM/CW激光测距雷达接收技术研究[D]. 北京: 装备学院, 2008.

[12] Deng B, Wang X, He Y, et al. Range-finding for chirp pulse in the fractional Fourier domain[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1915-1922.(in Chinese) 邓兵, 王旭, 何友, 等. Chirp脉冲的分数阶傅里叶域测距[J]. 航空学报, 2012, 33(10): 1915-1922.

[13] Zhao J G, Zhang X Y, Zhang Z Q. A processing method of target's range and velocity information for LFM/CW lidar[J]. Radar Science and Technology, 2010, 8(3): 193-198.(in Chinese) 赵继广, 张晓永, 张智诠. LFM/CW激光雷达测量方法[J]. 雷达科学与技术, 2010, 8(3): 193-198.

[14] Stann B, Redman B C, Lawler W, et al. Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging[J]. SPIE, 2007, 6550: 655005.

[15] Redman B C, Ruff W C, Aliberti K. Direct detection laser vibrometry with an amplitude modulated ladar[J]. SPIE, 2004, 5412: 218-228.

[16] Ruff W, Aliberti K, Giza M, et al. Translational Doppler detection using direct-detect chipped amplitude-modulated laser radar[J]. Microwave and Optical Technology Letters, 2004, 43(4): 358-363.

文章导航

/