材料工程与机械制造

复合材料布带缠绕成型压力控制技术

  • 何晓东 ,
  • 史耀耀 ,
  • 赵鹏兵
展开
  • 西北工业大学 机电学院, 陕西 西安 710072
何晓东 男,博士研究生。主要研究方向:复合材料缠绕铺放工艺及装备控制技术。Tel:029-88492851 E-mail:aqiqia@gmail.com;史耀耀 男,博士,教授,博士生导师。主要研究方向:复合材料缠绕铺放工艺及装备控制技术、专用数控工艺装备、加工表面光整技术。Tel:029-88492851 E-mail:shiyy@nwpu.edu.cn

收稿日期: 2013-09-10

  修回日期: 2013-10-13

  网络出版日期: 2013-10-21

基金资助

国家自然科学基金(51375394)

Control Technology of Composite Tape Winding Pressure

  • HE Xiaodong ,
  • SHI Yaoyao ,
  • ZHAO Pengbing
Expand
  • School of Mechatronics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-09-10

  Revised date: 2013-10-13

  Online published: 2013-10-21

Supported by

National Natural Science Foundation of China (51375394)

摘要

复合材料布带缠绕成型过程中的压力波动会影响制品的致密度和均匀度,同时会造成缠绕制品的界面强度及纤维体积分数不一致。芯模的圆度误差和安装误差会导致压力波动,气体的可压缩性、比例阀的死区效应、阀的流量非线性、气缸摩擦力及测量噪声会对缠绕压力控制造成非线性干扰。因此,设计了自适应灰色预测模糊PID控制器,通过对气缸输出缠绕压力的灰色预测,正确反映了压力信号的变化趋势,为模糊PID控制的推理提供了可靠依据。同时,采用两个独立的模糊推理系统来调节预测控制的步长和步长自整定算法的比例因子。仿真分析和实验结果表明:相比于传统PID控制,采用自适应灰色预测模糊PID控制使缠绕压力的稳态误差减小了62%,超调量减小了80%,有效提高了复合材料缠绕成型压力控制系统的稳定性。

本文引用格式

何晓东 , 史耀耀 , 赵鹏兵 . 复合材料布带缠绕成型压力控制技术[J]. 航空学报, 2014 , 35(3) : 868 -877 . DOI: 10.7527/S1000-6893.2013.0417

Abstract

Pressure fluctuation will affect the density and uniformity of the winding products during a composite tape winding process, which also results in their inconsistency in interface strength and fiber volume fraction. The roundness error and installation error in the mandrel will lead to pressure fluctuation, and the gas compressibility, proportion valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise will all create nonlinear interference to winding pressure control. In view of these factors, a grey-prediction-based adaptive fuzzy PID controller is proposed. The pressure signal trend will be reflected accurately via the grey prediction of winding pressure, which provides a reliable basis for the inference of fuzzy PID control. Simultaneously, the predictive control step and the scaling factor of a self-tuning algorithm are adjusted by two other fuzzy controllers separately. Simulation analysis and experimental results show that by using the grey-prediction-based adaptive fuzzy PID control, the winding pressure overshoot decreases by 62%, and steady-state error decreases by 80%. Compared with the traditional PID control, the stability of the composite tape winding pressure control system is effectively improved by the prediction-based adaptive fuzzy PID controller.

参考文献

[1] Shen G L. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006: 15-26. (in Chinese) 沈观林. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 15-26.

[2] Gutowski T G. Advanced composites manufacturing [M]. Li H Y, translated. Beijing: Chemical Industry Press, 2004: 21-30. (in Chinese) T. G. 古托夫斯基. 先进复合材料制造技术 [M]. 李宏运, 译. 北京: 化学工业出版社, 2004: 21-30.

[3] Yi X S, Du S Y, Zhang L T. Composite handbook[M]. Beijing: Chemical Industry Press, 2009: 387-388. (in Chinese) 益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009: 387-388.

[4] Littlefield A, Hyland E, Andalora A, et al. Carbon fiber/thermoplastic overwrapped gun tube[J]. Materials and Manufacturing Processes, 2006, 21(6): 573-578.

[5] Shi Y Y, Tang H, Yu Q. Key technology of the NC tape winding machine[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 233-239. (in Chinese) 史耀耀, 唐虹, 余强.数控布带缠绕机关键技术[J]. 航空学报, 2008, 29(1): 233-239.

[6] Rudd C D, Turner M R, Long A C, et al. Tow placement studies for liquid composite moulding[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1105-1121.

[7] Hassan N, Thompson J E, Batra R C, et al. A heat transfer analysis of the fiber placement composite manufacturing process[J]. Journal of Reinforced Plastics and Composites, 2005, 24(8): 869-888.

[8] Zhang J B, Wen L W, Xiao J, et al. Processing pressure control technique for automatic tape laying[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1973-1977. (in Chinese) 张建宝, 文立伟, 肖军, 等. 自动铺带成型压力控制技术[J]. 航空学报, 2009, 30(10): 1973-1977.

[9] Shi Y, Tang H, Yu Q. Development of a NC tape winding machine[M]//Yan X, Ion W, Eynard B. Global design to gain a competitive edge. London: Springer London, 2008: 753-762.

[10] Edmond R, Yildirim H. A high performance pneumatic force actuator system: part Ⅱ-nonlinear controller design[J]. Journal of Dynamic Systems Measurement and Control, 2000, 122(3): 426-434.

[11] Chen Y, Zhang J F, Yang C J, et al. Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve[J]. Mechatronics, 2007, 17(6): 325-335.

[12] Lu B, Tao G L, Liu H, et al. Modeling and constant pressure control of pneumatic suspension system for zero-gravity simulation[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(2): 379-385. (in Chinese) 路波, 陶国良, 刘昊, 等. 零重力模拟气动悬挂系统的建模及恒压控制[J]. 浙江大学学报: 工学版, 2010, 44(2): 379-385.

[13] Wang K, Lv K, Shi W R, et al. Pneumatic pressure control of large caliber optical polishing system[J]. Chinese Journal of Scientific Instrument, 2013, 34(3): 531-536. (in Chinese) 王楷, 吕科, 石为人, 等. 大口径光学抛光系统的气动压力控制[J]. 仪器仪表学报, 2013, 34(3): 531-536.

[14] Cao Y P, Yan X A. Pneumatic and control[M]. Tianjing: Tianjing University Press, 2010: 26-52. (in Chinese) 曹玉平, 阎祥安. 气压传动与控制[M]. 天津: 天津大学出版社, 2010: 26-52.

[15] Beater P. Pneumatic drives: system design, modeling and control[M]. Berlin: Springer Berlin Heidelberg, 2007: 113-116.

[16] Yuan L S, Li Y Z, Liu M, et al. Fuzzy active thermal control system of the inter planetary spacecraft[J]. Journal of Astronautics, 2006, 27(1): 81-84. (in Chinese) 袁领双, 李运泽, 刘猛, 等. 行星际航天器主动热控系统模糊控制[J]. 宇航学报, 2006, 27(1): 81-84.

[17] Karasakal O, Guzelkaya M, Eksin I, et al. An error-based on-line rule weight adjustment method for fuzzy PID controllers[J]. Expert Systems With Applications, 2011, 38(8): 10124-10132.

[18] Deng J L. Grey theory[M]. Wuhan: Huazhong University of Science & Technology Press, 2002: 10-28. (in Chinese) 邓聚龙. 灰色理论基础[M]. 武汉: 华中理工大学出版社, 2002: 10-28.

[19] Liu S, Lin Y. Grey systems: theory and applications[M]. Berlin: Springer Berlin Heidelberg, 2010: 35-69.

[20] Lian R J. Grey-prediction self-organizing fuzzy controller for robotic motion control[J]. Information Sciences, 2012, 202: 73-89.

文章导航

/