材料工程与机械制造

深空探测着陆器数字化设计及着陆性能影响因素

  • 陈金宝 ,
  • 聂宏 ,
  • 万峻麟
展开
  • 1. 南京航空航天大学 航天学院, 江苏 南京 210016;
    2. 南京航空航天大学 航空宇航学院, 江苏 南京 210016;
    3. 中国电子科技集团公司第二十八研究所, 江苏 南京 210016
陈金宝 男,博士,副教授。主要研究方向:航天器结构动力学,飞行器着陆缓冲装置设计。Tel:025-84896516-6203 E-mail:chenjbao@nuaa.edu.cn;聂宏 男,博士,教授,博士生导师。主要研究方向:飞行器着陆缓冲装置设计。Tel:025-84892411 E-mail:hnie@nuaa.edu.cn

收稿日期: 2013-07-01

  修回日期: 2013-09-20

  网络出版日期: 2013-10-15

基金资助

国家自然科学基金(51105196);江苏省自然科学基金(BK2011733);南京航空航天大学基本科研业务费(NS2013086)

Digital Design and Landing Performance Influence Factors of Deep Space Lander

  • CHEN Jinbao ,
  • NIE Hong ,
  • WAN Junlin
Expand
  • 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. The Ttwenty-eighth Research Institute of China Electronic Technology Group Corporation, Nanjing 210016, China

Received date: 2013-07-01

  Revised date: 2013-09-20

  Online published: 2013-10-15

Supported by

National Natural Science Foundation of China (51105196); National Natural Science Foundation of Jiangsu (BK2011733); NUAA Fundamental Research Funds (NS2013086)

摘要

以对称分布四腿悬架式月球着陆器为研究对象,建立了着陆器软着陆过程六自由度动力学模型并改进了月壤摩擦系数模型;在以上动力学模型基础上,以月球着陆器为例编制了着陆器软着陆六自由度动力学分析程序,利用该程序分析了探测器全机月面软着陆性能,重点研究了动力学模型中的月面等效弹性系数、月面摩擦系数和月面倾斜角度等参数对探测器着陆性能的影响。研究表明上述影响因素对着陆器着陆缓冲性能影响显著,通过对以上参数的合理选择可以有效缓解月球探测器月面软着陆的着陆冲击过载。

本文引用格式

陈金宝 , 聂宏 , 万峻麟 . 深空探测着陆器数字化设计及着陆性能影响因素[J]. 航空学报, 2014 , 35(2) : 541 -554 . DOI: 10.7527/S1000-6893.2013.0396

Abstract

Symmetrical four-legged suspension lunar lander as the research object, a six-degree-of-freedom dynamic model is established and the model of the lunar soil friction coefficient is improved. Based on the above dynamic models, six degrees of freedom dynamic analysis program on lunar lander soft-landing is applied to analyze soft-landing performance of total lunar lander. The parameters about lunar surface equivalent elastic coefficient, frictional coefficient, inclination angle and so on are studied to analyze the influence on landing performance of the lunar lander. The results show that landing and buffering performance is influenced dramatically on the above factors, and reasonable parameters are chosen to relieve effectively the impact overload of lunar lander soft-landing.

参考文献

[1] Chen J B, Ni H. Overloading of landing based on the deformation of the lunar lander[J]. Chinese Journal of Aeronautics, 2008, 21(1): 43-47.

[2] Lu Y T, Song S G, Wang C J. Dynamics analysis for lunar lander based on rigid-flexible couple model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 36(11):1348-1352.(in Chinese) 逯运通, 宋顺广, 王春洁. 基于刚柔耦合模型的月球着陆器动力学分析[J].北京航空航天大学学报, 2011, 36(11): 1348-1352.

[3] Deng Z Q, Wang S C. Experimental research on buffer characteristics of lunar lander with three legs[J]. Journal of Harbin Institute of Technology, 2007, 23(1):32-34. (in Chinese) 邓宗全, 王少纯. 三支撑月球着陆器缓冲性能试验研究[J]. 哈尔滨工业大学学报, 2007, 23(1):32-34.

[4] Admire J, Mackey A. Dynamic analysis of a multi-legged lunar landing vehicle to determine structural loads during touchdown, NASA TN D-2582[R]. Washington: NASA, 1965.

[5] Irwin D C. Landing dynamics study for lunar landing research vehicle, NASA CR-428[R]. Washington: NASA, 1966.

[6] Wang C J, Guo Y. Dynamic analysis of lunar lander[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2):183-187. (in Chinese) 王春洁, 郭永. 着陆器软着陆机构的动力学分析[J]. 北京航空航天大学学报, 2009, 35(2): 183-187.

[7] Hilderman R A, Mueller W H, Mantus M. Landing dynamics of the lunar excursion module[J]. Journal of Spacecraft and Rockets, 1966, 3(10): 1484-1489.

[8] Wang C, Liu R Q, Deng Z Q. Dynamics analysis of lunar lander's landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4):381-385. (in Chinese) 王闯, 刘荣强, 邓宗全. 月球着陆器着陆过程动力学分析[J]. 北京航空航天大学学报, 2008, 34(4): 381-385.

[9] Liu Z Q, Huang C P. Review of the development of soft-landing mechanisms for lunar explorations[J]. Chineses Space Science and Technology, 2006, 2(1): 33-39. (in Chinese) 刘志全, 黄传平. 月球探测器软着陆机构发展综述[J]. 中国空间科学技术, 2006, 2(1): 33-39.

[10] Su Q H, Zhao Y. Analysis method for lunar landers landing safety[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11): 1522-1526. (in Chinese) 苏庆华, 赵剡. 月球着陆器着陆安全分析方法[J].北京航空航天大学学报, 2012, 38(11): 1522-1526.

[11] Chen J B, Nie H, Zhao J C. Review of the development of soft landing buffer for lunar explorations[J]. Journal of Astronautics, 2008, 29(3): 731-735. (in Chinese) 陈金宝, 聂宏, 赵金才. 月球探测器软着陆缓冲机构关键技术研究进展[J]. 宇航学报, 2008, 29(3): 731-735.

[12] Hu Y B, Sun Y. Research on static of lunar lander with legs[J]. Chinese Space Science and Technology, 2009, 23(2): 18-26. (in Chinese) 胡亚兵, 孙毅. 腿式月球着陆器静态稳定性研究[J].中国空间科学技术, 2009, 23(2): 18-26.

[13] Long L B, Qing Q X, Wen G L. Simulation analysis of lander soft landing's stability on ADAMS[J]. Journal of Engineering Design, 2010, 46(9):38-45. (in Chinese) 龙铝波, 卿启湘, 文桂林. 基于ADAMS的着陆器软着陆稳定性仿真分析[J]. 工程设计学, 2010, 46(9): 38-45.

[14] Zhang M. Research on some key technologies of aircraft ground dynamics. Nanjing: College Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) 张明. 飞机地面动力学若干关键技术研究. 南京: 南京航空航天大学航空宇航学院, 2009.

[15] Yang G T. Soil dynamics[M]. Beijing: China Building Material Press, 2000: 58-89. (in Chinese) 杨桂通. 土动力学[M]. 北京: 中国建材出版社, 2000: 58-89.

[16] Lavender R E. Touchdown dynamics analysis of spacecraft for soft lunar landing, NASA TN D-2001[R]. Washington: NASA, 1964.

[17] Nohmi M, Miyahara A. Modeling for lunar lander by mechanical dynamics software, AIAA-2005-6416.Reston: AIAA, 2005.

[18] Bhushan B. Introduction to tribology[M]. Beijing: China Machine Press, 2005:185-201.

[19] Fan S C, Jia Y, Xiang S H. A preliminary study on simulation of lunar surface terrain[J]. Spacecraft Environment Engineering, 2007, 24(1): 15-20. (in Chinese) 樊世超, 贾阳, 向树红. 月面地形地貌环境模拟初步研究[J]. 航天器环境工程, 2007, 24(1): 15-20.

[20] Willman B M, Walter W B, Davids M. Properties of lunar soil stimulant JSC-1[J]. International Journal of Rock Mechanics and Mining, 1996, 3(1):13-19.

[21] David S M, James L C, Walter W W, et al. JSC-1: A new lunar soil simulant[J]. Engineering, Construction, and Operations in Space Ⅳ, 1994, 2: 857-866.

[22] Willman B M, Boles W W. Properties of lunar soil stimulant JSC-1[J]. Journal of Aerospace Engineering, 1995, 8(2): 77-87.

[23] Yoshida H, Watanabe T, Kanamori H, et al. Experimental study on water production by hydrogen reduction of lunar soil simulant in a fixed bed reactor[J]. Space Resources Roundtable Ⅱ, 2000, 1: 75.

[24] Kanamori H, Udayawa S, Yoshida T, et al. Properties of lunar soil simulant manufactured in Japan[J]. Space, 1998, 98: 462-468.

[25] Zheng Y C, Ouyang Z Y, Wang S J. Physical and mechanical properties of lunar regolith[J]. Journal of Mineralogy and Petrology, 2004, 24(4): 14-19. (in Chinese) 郑永春, 欧阳自远, 王世杰. 月壤的物理和机械性质[J]. 矿物岩石, 2004, 24(4): 14-19.

[26] Zheng Y C, Wang S J, Feng J M. CAS-1 lunar soil stimulant[J]. ACTA Mineralogical Sinica, 2004, 24(3):571-578.(in Chinese) 郑永春, 王世杰, 冯俊明. CAS-1模拟月壤[J]. 矿物学报, 2004, 24(3): 571-578.

[27] Zou M, Li J Q, He L. Experiment study on the pressure-sinkage characteristic of the stimulant regolith with different particle size distributions[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2338-2346. (in Chinese) 邹猛, 李建桥, 何玲. 不同粒径分布模拟月壤承压特性试验研究[J]. 航空学报, 2012, 33(12): 2338-2346.

[28] Jin D W, Li J Q, Dang Z L. Study on model for sinkage of lunar rover wheel under slip[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1215-1221. (in Chinese) 金大玮, 李建桥, 党兆龙. 滑转条件下月球车轮沉陷模型研究[J]. 航空学报, 2013, 34(5):1215-1221.

[29] Zheng Y C. Development of lunar soil simulates and characteristics of microwave radiation of lunar regolith. Beijing: Graduation School, Chinese Academy of Sciences, 2005. (in Chinese) 郑永春. 模拟月壤研制与月壤的微波辐射特性研究. 北京: 中国科学院研究生院, 2005.

[30] He B J, He X Y, Zhang M X. Plume aerodynamic effects of cushion engine in lunar landing[J]. Chinese Journal of Aeronautics, 2013, 26(2): 269-278.

文章导航

/