流体力学与飞行力学

基于大幅值Lyapunov轨道的地月转移轨道设计研究

  • 谭明虎 ,
  • 张科 ,
  • 吕梅柏 ,
  • 邢超
展开
  • 1. 西北工业大学 航天飞行动力学国家级重点实验室, 陕西 西安 710072;
    2. 西北工业大学 航天学院, 陕西 西安 710072
谭明虎男,博士研究生。主要研究方向:深空探测轨道设计。Tel:029-88494418E-mail:duguguo@mail.nwpu.edu.cn;张科男,博士,教授,博士生导师。主要研究方向:飞行器导航、制导与控制。Tel:029-88494418E-mail:zhangke@nwpu.edu.cn

收稿日期: 2013-07-12

  修回日期: 2013-09-13

  网络出版日期: 2013-09-30

基金资助

国家自然科学基金(61174204);西北工业大学基础研究基金(GCKY1006);航天飞行动力学技术重点实验室开放基金(2012afdl020)

Research on Earth-Moon Transfer by Using a Large Amplitude Lyapunov Orbit

  • TAN Minghu ,
  • ZHANG Ke ,
  • LYU Meibo ,
  • XING Chao
Expand
  • 1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-07-12

  Revised date: 2013-09-13

  Online published: 2013-09-30

Supported by

National Natural Science Foundation of China (61174204); NPU Foundation for Fundamental Research (GCKY1006); Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory (2012afdl020).

摘要

基于平面圆形限制性三体问题模型,利用与绕月轨道相切的大幅值Lyapunov周期轨道,提出了一种新的地月转移轨道设计方法。根据Poincaré截面与限制性三体问题动力学系统对称性计算得到的大幅值Lyapunov轨道,通过与绕月轨道拼接,将地月转移问题转化为地球到大幅值Lyapunov轨道的转移问题。为保证探测器能够从近地轨道(LEO)切向逃逸到达大幅值Lyapunov轨道,通过计算其稳定流形,采用最近点作为Poincaré截面的终止条件求解探测器的初始状态,并根据初始状态完成地月轨道的设计。仿真结果表明,该地月转移策略相比于Hohmann转移,在同样只需要两次速度增量的前提下,约节约100 m/s的速度增量,该研究为地月转移轨道的设计提供了一种新思路。

本文引用格式

谭明虎 , 张科 , 吕梅柏 , 邢超 . 基于大幅值Lyapunov轨道的地月转移轨道设计研究[J]. 航空学报, 2014 , 35(5) : 1209 -1215 . DOI: 10.7527/S1000-6893.2013.0388

Abstract

A method is described for constructing a new type of low energy transfer trajectory from the Earth to the Moon by utilizing a large amplitude Lyapunov orbit which is tangential to the lunar orbit. In order to find the specific Lyapunov orbit, a simple numerical method is investigated by analyzing the states in the Poincaré map. After achieving the patch of the lunar orbit and the large amplitude Lyapunov orbit, the Earth-Moon transfer problem can be transformed into that of transferring to the Lyapunov orbit from the Earth. In order to guarantee the spacecraft can escape from the low Earth orbit (LEO) tangentially, the periapsis map is introduced to determine the spacecraft's initial states when calculating the stable manifolds, and then Earth-Moon transfer is accomplished from these initial states. Numerical simulations demonstrate that compared with the classical Hohmann transfer, this new transfer strategy needs approximately 100 m/s less fuel consumption and provides a new way of thinking for low energy Earth-Moon transfer.

参考文献

[1] Conley C C. Low energy transit orbits in the restricted three-body problem[J]. SIAM Journal on Application Mathematics, 1968, 16(4): 732-746.

[2] Belbruno E A, Miller J K. Sun-perturbed earth to moon transfers with ballistic capture[J]. Journal of Guidance, Control and Dynamics, 1993, 16(4): 770-775.

[3] Koon W S,Lo M W,Marsden J E,et al. Low energy transfer to the moon[J]. Celestial Mechanics and Dynamical Astronomy, 2001, 81(1-2): 63-73.

[4] Mingotti G, Topputo F, Bernelli-Zazzera F. Optimal low-thrust invariant manifold trajectories via attainable sets[J]. Journal of Guidance,Control and Dynamics, 2011, 34(6): 1644-1653.

[5] Biesbroek R. Study on lunar trajectories from GTO by using weak stability boundary transfers and swing-by's, EWP2014, ESTEC. Noordwijk: ESTEC, 1999.

[6] Vasile M. Combining evolutionary programs and gradient methods for WSB transfer optimization[M]//Ciriani T A. Operations Research in Space and Air.: Springer US, 2003: 85-102.

[7] Lin S Y, Li Z J, Kang Z Y. Technology of the moon exploration-orbit design and computation[J]. Aerospace Shanghai, 2003(4): 57-62. (in Chinese) 林胜勇, 李珠基, 康志宇.月球探测技术-轨道设计和计算[J]. 上海航天, 2003(4): 57-62.

[8] Zhu R Z, Yu N J, Yu M L. Studies on Earth-Moon transfer trajectory with gravitational capture[J]. Journal of Astronautics, 2000, 21(4): 7-14. (in Chinese) 朱仁璋, 俞南嘉, 余梦伦.飞月轨道引力捕获设计方法研究[J].宇航学报, 2000, 21(4): 7-14.

[9] Zhang H Q, Li Y J. Research on using libration point manifolds to design Earth-Moon transfer trajectory[J]. Measurement & Control Technology, 2011, 30(3): 94-97. (in Chinese) 张汉清, 李言俊. 利用平动点流形设计地月转移轨道的研究[J].测控技术, 2011, 30(3): 94-97.

[10] Zhang H Q, Li Y J. Design of L1-Earth low energy transfer trajectory in Earth-Moon three-body problem[J]. Journal of Harbin Institute of Technology, 2011, 43(5): 84-88. (in Chinese) 张汉清, 李言俊. 地月三体问题下L1-地球低能转移轨道设计[J]. 哈尔滨工业大学学报, 2011, 43(5): 84-88.

[11] Xu M, Xu S J. Low energy trajectory from Earth to Moon for low thrust spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 781-787. (in Chinese) 徐明, 徐世杰. 小推力航天器的地月低能转移轨道[J].航空学报, 2008, 29(4): 781-787.

[12] He W, Xu S J. Research on low energy transfer trajectory design method between Earth and Moon[J]. Journal of Astronautics, 2006, 27(5): 965-969. (in Chinese) 何巍, 徐世杰. 地月低能转移轨道设计方法研究[J]. 宇航学报, 2006, 27(5): 965-969.

[13] Zazzera F B, Topputo F, Massari M. Assessment of mission design including utilization of libration points and weak stability boundaries. Politecnico di Milano: ESTEC, 2004.

[14] Zhang H Q. Research on collinear libration point dynamical systems and trajectory design. Xi'an: School of Astronautics, Northwestern Polytechnical University, 2011. (in Chinese) 张汉清.共线平动点动力学系统研究和和轨道研究. 西安: 西北工业大学航天学院, 2011.

[15] Liu G, Huang J, Ma G, et al. Nonlinear dynamics and station-keeping control of a rotating tethered satellite system in halo orbits[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1227-1237.

[16] Xu M. Overview of orbital dynamics and control for libration point orbits[J]. Journal of Astronautics, 2009, 30(4): 1299-1308. (in Chinese) 徐明.平动点轨道的动力学与控制研究综述[J].宇航学报, 2009, 30(4): 1299-1308.

[17] Huang J, Liu G, Ma G F. Nonlinear optimal attitude tracking control of uncertain three-inline tethered satellite systems[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 679-687. (in Chinese) 黄静, 刘刚, 马广富. 直连式三体绳系卫星姿态鲁棒最优跟踪控制[J]. 航空学报, 2012, 33(4): 679-687.

[18] Schanzle A F. Horseshoe-shaped orbits in the Jupiter-Sun restricted problem[J]. The Astronomical Journal, 1967, 72(2): 149-157.

[19] Xu M, Xu S J. Stability analysis and transiting trajectory design for retrograde orbits around moon[J]. Journal of Astronautics, 2009, 30(5): 1785-1790. (in Chinese) 徐明, 徐世杰.绕月飞行的大幅值逆行轨道研究[J].宇航学报, 2009, 30(5): 1785-1790.

[20] Villac B F, Scheeres D J. Escaping trajectories in the hill three-body problem and applications[J]. Journal of Guidance, Control and Dynamics, 2003, 26(2): 224-232.

[21] Paskowitz M E, Sheeres D J. Robust capture and transfer trajectories for planetary satellite orbiters[J]. Journal of Guidance, Control and Dynamics, 2006, 29(2): 342-353.

文章导航

/