电子与控制

基于压缩感知的频率和DOA联合估计算法

  • 沈志博 ,
  • 赵国庆 ,
  • 董春曦 ,
  • 黄龙
展开
  • 西安电子科技大学 电子信息攻防对抗与仿真技术教育部重点实验室, 陕西 西安 710071
沈志博男,博士研究生。主要研究方向:电子战信号处理,雷达对抗。Tel:029-88204179E-mail:youfenglaiyi1026@163.com;赵国庆男,教授,博士生导师。主要研究方向:电子对抗。Tel:029-88204179E-mail:guoqzhao@mail.xidian.edu.cn

收稿日期: 2013-06-07

  修回日期: 2013-09-16

  网络出版日期: 2013-09-23

基金资助

中央高校基本科研业务费专项资金(K5051202026);国家“973”计划

United Frequency and DOA Estimation Algorithm Based on Compressed Sensing

  • SHEN Zhibo ,
  • ZHAO Guoqing ,
  • DONG Chunxi ,
  • HUANG Long
Expand
  • Key Laboratory of Electronic Information Countermeasure and Simulation, Ministry of Education, Xidian University, Xi'an 710071, China

Received date: 2013-06-07

  Revised date: 2013-09-16

  Online published: 2013-09-23

Supported by

The Fundamental Research Funds for the Central Universities (K5051202026); National Basic Research Program of China

摘要

波达方向(DOA)估计是阵列信号处理的一个重要问题,针对信号的DOA估计问题,本文基于压缩感知理论,提出了一种新的频率和角度联合估计算法。首先利用方向波数的空间稀疏性,建立过完备稀疏字典,然后利用压缩采样阵列结构通过求解最优化问题得到方向波数的高分辨估计,最后利用最优空域滤波实现信号到达角度和频率的配对。相对于传统算法,该算法能够实现多信号DOA的高分辨估计,且经过压缩采样后降低了运算量,仿真验证了该算法的正确性与有效性。

本文引用格式

沈志博 , 赵国庆 , 董春曦 , 黄龙 . 基于压缩感知的频率和DOA联合估计算法[J]. 航空学报, 2014 , 35(5) : 1357 -1364 . DOI: 10.7527/S1000-6893.2013.0395

Abstract

The direction-of-arrival (DOA) estimation is an important issue in array signal processing. For this purpose, a new united frequency and DOA estimation algorithm based on compressed sensing is proposed in this paper. First, an overcomplete sparse dictionary is established using the sparseness of the direction-of-wave number space and then with the compressive sampling array architecture, a high resolution direction-of-wave number estimation is achieved. Finally, the spatial filtering method is used to make a match of the direction-of-wave number with its frequency. Compared with the traditional methods, the proposed method reduces computational complexity by compressive sampling and realizes high resolution DOA estimation of multiple signals. The simulation results verify the effectiveness and feasibility of the method.

参考文献

[1] Krim H, Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.

[2] Liu Y, Wu S J, Wu M Y, et al. Wideband DOA estimation based on spatial sparseness[J]. Acta Aeronautica et Astronautica Sinica, 2012,33(11): 2028-2038. (in Chinese) 刘寅, 吴顺君, 吴明宇, 等. 基于空域稀疏性的宽带DOA估计[J]. 航空学报. 2012, 33(11): 2028-2038.

[3] Li J F, Zhang X F. Joint estimation of angle and Doppler frequency in bistatic MIMO radar based on quadrilinear decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1474-1482. (in Chinese) 李建峰, 张小飞. 基于四线性分解的双基地MIMO雷达的角度和多普勒频率联合估计[J]. 航空学报, 2012, 33(8): 1474-1482.

[4] Zhao G Q. Radar countermeasure theory[M]. Xi'an: Xidian University Press, 1999: 44-45. (in Chinese) 赵国庆. 雷达对抗原理[M]. 西安:西安电子科技大学出版社, 1999: 44-45.

[5] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.

[6] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408-1418.

[7] Liu X J, Liu C F, Liao G S. Novel method for the narrow band signal frequency and angle estimation[J]. Journal of Xidian University: Natural Science Edition, 2010, 37(3): 481-486. (in Chinese) 刘晓军, 刘聪锋, 廖桂生. 窄带信号频率和角度估计新方法[J]. 西安电子科技大学学报: 自然科学版, 2010, 37(3): 481-486.

[8] Chen Y F, Huang J G, He C B. High resolution direction-of-arrival estimation based on compressive sensing with noval compression matrix//2012 IEEE international Conference on Signal Processing Communication and Computing(ICSPCC), 2012: 764-767.

[9] Gu J F, Zhu W P, Swamy M N S. Compressed sensing for DOA estimation with fewer receivers than sensors//2011 IEEE International Symposium on Circuits and Systems(ISCAS), 2011: 1752-1755.

[10] Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with sub-Nyquist spatiotemporal sampling[J]. IEEE Transactions on Signal Processing, 1994, 42(10): 2781-2794.

[11] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[12] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

[13] Candes E J, Tao T. Near-optimal signal recovery from random projections: Universal Encoding Strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

[14] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

[15] Van Veen B D, Buckley K M. Beamforming: a versatile approach to spatial filtering [J]. IEEE ASSP Magazine, 1988, 5(2): 4-24.

[16] Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries[J]. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.

[17] Candes E J, Eldar Y C, Needell D. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computation Harmonic Analysis, 2011, 31(1): 59-73.

[18] Zhang J D, Zhang G, Pan H, et al. Optimized sensing matrix design of filter structure based compressed sensing radar[J]. Acta Aeronautica et Astronautica Sinica, 2013(4): 864-872. (in Chinese) 张劲东, 张弓, 潘汇, 等. 基于滤波器结构的压缩感知雷达感知矩阵优化[J]. 航空学报, 2013, 34(4): 864-872.

[19] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal of Scientific Computing, 1998, 20(1): 33-61.

[20] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.

[21] Blumensath T, Davies M E. Gradient pursuits[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2370-2382.

[22] Frost O L. An algorithm for linearly constrained adaptive array processing[J]. Proceeding of the IEEE, 1972, 60(8): 926-935.

文章导航

/