固体力学与飞行器总体设计

采用压电叠层作动器的弹性梁振动主动控制实验研究

  • 宋来收 ,
  • 夏品奇
展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
宋来收 男,博士研究生。主要研究方向:直升机振动及主动控制。E-mail:lss05012@nuaa.edu.cn;夏品奇 男,博士,教授,博士生导师。主要研究方向:直升机振动及控制。Tel:025-84895795 E-mail:xiapq@nuaa.edu.cn

收稿日期: 2012-11-10

  修回日期: 2013-09-02

  网络出版日期: 2013-09-17

基金资助

直升机旋翼动力学国防科技重点实验室基金(NBA10004)

Experimental Investigation on Active Vibration Control of Elastic Beam by Using Piezoelectric Stack Actuator

  • SONG Laishou ,
  • XIA Pinqi
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2012-11-10

  Revised date: 2013-09-02

  Online published: 2013-09-17

Supported by

The Science and Technology Foundation of State Key Laboratory of Rotorcraft Aeromechanics (NBA10004)

摘要

结构响应主动控制系统中常用的惯性作动器由于附加质量大、工作频带窄和响应速度慢等缺点,降低了控制系统的性能。压电作动器具有质量轻、工作频带宽和响应速度快等优点,作为高效执行元件能有效地提高控制系统的性能。本文采用压电叠层作动器驱动自由-自由弹性梁模型,以观测点的加速度响应为控制目标,采用频域谐波稳态控制策略进行了自由梁结构谐波振动响应主动控制实验研究。实验结果表明,本文建立的采用压电叠层作动器的结构响应主动控制系统能有效地控制弹性梁结构的振动水平,并具有快速跟踪外激励变化的自适应控制能力。

本文引用格式

宋来收 , 夏品奇 . 采用压电叠层作动器的弹性梁振动主动控制实验研究[J]. 航空学报, 2014 , 35(1) : 171 -178 . DOI: 10.7527/S1000-6893.2013.0379

Abstract

The inertial actuator is often used in the active control system of structural response. Due to its shortcomings such as heavy weight, narrow band of working frequency and slow response speed, it hampers the performance of the control system. The piezoelectric actuator has the advantages of lighter weight, wider band of working frequency and faster response speed and can effectively improve the performance of the control system as an efficient actuator. In this paper, an experimental investigation on the active vibration control of a free-free elastic beam structure is conducted by using a piezoelectric stack actuator, taking the acceleration response at the observed point as the control objective and using the harmonic steady control strategy in the frequency domain. The experimental results demonstrate that the active vibration control system established in this paper can effectively control the vibration level of an elastic beam structure and has the adaptive control ability to fast track changes of external excitation.

参考文献

[1] Hoffmann F, Konstanzer P, Priems M. Active cabin vibration reduction for jet-smooth helicopter ride[C]//Proceedings of the 35th European Rotorcraft Forum, 2009.

[2] Lu Y, Gu Z Q, Ling A M. Flight test of active control of structure response for helicopter[J]. Journal of Vibration Engineering, 2012, 25(1): 24-29. (in Chinese) 陆洋, 顾仲权, 凌爱民. 直升机结构响应主动控制飞行试验[J]. 振动工程学报, 2012, 25(1): 24-29.

[3] Teal R S, Mccorvey D L, Mailoy D. Active vibration suppression for the CH-47D[C]//Proceedings of the 53rd Annual Forum of American Helicopter Society, 1997.

[4] Prouty R. Should we consider variable rotor speeds[J]. Vertiflite, 2004, 50(4): 24-27.

[5] Preumont A. Vibration control of active structures, an introduction[M]. Norwell, MA: Kluwer, 1997.

[6] Wang X, Ehlers C, Neitzel M. Electro-mechanical dynamic analysis of the piezoelectric stack[J]. Smart Materials and Structures, 1996, 5(4): 492-500.

[7] Flint E, Liang C, Rogers C A. Electromechanical analysis of piezoelectric stack active member power consumption[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(1): 117-124.

[8] Redmond J, Barney P. Vibration control of stiff beams and plates using structurally integrated PZT stack actuators[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(6): 525-635.

[9] Young A J, Hansen C H. Control of flexural vibration in a beam using a piezoceramic actuator and an angle stiffener[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(4): 536-549.

[10] Kermani M R, Patel R V. Flexure control using piezostack actuators: design and implementation[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 181-188.

[11] Yang Z C, Wang W, Gu Y S, et al. Smart structure vibration control using a new bending type of piezoelectric stack actuator[J]. Journal of Vibration and Shock, 2009, 28(9): 130-134. (in Chinese) 杨智春, 王巍, 谷迎松, 等. 一种弯曲型压电堆作动的设计及在振动控制中的应用[J]. 振动与冲击, 2009, 28(9): 130-134.

[12] Hanagud S, Babu G L. Smart structures in the control of airframe vibrations[J]. Journal of the American Helicopter Society, 1994, 39(2): 69-72.

[13] Singhvi R, Vennkatesan C. Vibration control of an idealized helicopter model using piezo stack sensor-actuator[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.

[14] Heverly D. Optimal actuator placement and active structure design for control of helicopter airframe vibrations[D]. Pennsylvania: Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 2002.

[15] Walchko J C, Kim J S, Wang K W. Hybrid feedforward-feedback control for active helicopter vibration suppression[C]//Proceedings of the 63rd Annual Forum of American Helicopter Society, 2007.

[16] Song L S, Xia P Q. Coupled fuselage/piezoelectric stack actuator optimization method for active vibration control of helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1835-1841. (in Chinese) 宋来收, 夏品奇. 直升机振动主动控制的机身/压电叠层作动器耦合优化法[J]. 航空学报, 2011, 32(10): 1835-1841.

[17] Bauchau O A, Rodriguez J, Chen S Y. Coupled rotor-fuselage analysis with finite motions using component mode synthesis[J]. Journal of the American Helicopter Society, 2004, 49(2): 201-211.

[18] Yeo H, Chopra I. Coupled rotor/fuselage vibration analysis for teetering rotor and test data comparison[J]. Journal of Aircraft, 2001, 38(1): 111-121.

[19] Chandrasekar J, Liu L, Patt D. Adaptive harmonic steady state control for disturbance rejection[J]. IEEE Transactions on Control System Technology, 2006, 14(6): 993-1007.

[20] Veres S M. Adaptive harmonic control[J]. International Journal of Control, 2001, 74(12): 1219-1225.

文章导航

/