异步多传感器多目标PHD航迹合成算法
收稿日期: 2012-12-25
修回日期: 2013-07-11
网络出版日期: 2013-09-05
基金资助
国家自然科学基金(60901069)
PHD for Composite Tracking Algorithm Based on Asynchronous Multi-sensor Multi-target Measurements
Received date: 2012-12-25
Revised date: 2013-07-11
Online published: 2013-09-05
吴鑫辉 , 黄高明 , 高俊 . 异步多传感器多目标PHD航迹合成算法[J]. 航空学报, 2013 , 34(12) : 2785 -2793 . DOI: 10.7527/S1000-6893.2013.0338
The current composite tracking algorithms are computationally intractable and may lose target tracks in the undetected region. In order to solve these problems, a new composite tracking algorithm based on the probability hypothesis density (PHD) algorithm is proposed. The detection region is divided into a one-sensor region, a multiple-sensor region and an undetected region. Multi-sensor PHD filters for the regions are constructed using finite sets statistics theory (FISST). Tracking initiation and tracking maintenance methods for different regions are presented. Finally, the closed-form solutions to the PHD composite tracking algorithm are derived under the linear-Gaussian conditions. Compared with the product multi-sensor PHD, simulation results show that the proposed algorithm has lower computational complexity and better estimation of target states, which indicates its good prospect for application in engineering fields.
[1] Yan C H, Zhang K, Luo Q. MSC-UHT-based passive multi-sensor multi-target track initiation techniques. Modern Electronics Technique, 2012, 35(6): 83-88.(in Chinese) 闫常浩, 张坤, 罗强. 基于MSC-UHT的被动多传感器多目标航迹起始技术. 现代电子技术, 2012, 35(6): 83-88.
[2] Huang Y P, WU H B, Zhang Z Y. Bearing combination-based fusion algorithm for heterogeneous sensors track data. Journal of Southwest Jiaotong University, 2011, 46(2): 277-281. (in Chinese) 黄友彭, 吴汉宝, 张志云. 基于方位合成的异类传感器航迹数据融合算法. 西南交通大学学报, 2011, 46(2): 277-281.
[3] Vo B T. Random finite sets in multi-object filtering. Ph.D dissertation, The University of Western, Australia, 2008.
[4] Pollard E, Pannetier B, Romabaut M. Hybrid algorithms for multitarget tracking using MHT and GM-CPHD. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 832-847.
[5] Yang K, Fu Z Q, Wang J T. Multi-sensor probability hypothesis density algorithm in multi-target filtering. Journal of Electronics&Information Tchnology, 2012, 34(6): 1368-1375.(in Chinese) 杨可, 傅忠谦, 王剑亭. 多目标滤波中的多传感器概率假设密度算法. 电子与信息学报, 2012, 34(6): 1368-1375.
[6] Mahler R. Multitarget bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
[7] Nagappa S, Clark D E. On the ordering of the sensors in the iterated-corrector probability hypothesis density (PHD) filter. Proceedings of SPIE, 2011: 80500M-1-6.
[8] Mahler R. Approximate multisenor CPHD and PHD filter. Proceedings of 13th Conference on Information Fusion, 2010:1-8.
[9] Vo B N, Singh S, Doucet A. Sequential monte carlo methods for multi-target filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1244.
[10] Delande E, Duflos E, Vanheeghe P. Multi-sensor PHD by space partitioning: computation of a true reference density within the PHD framework. IEEE Statistical Signal Processing Workshop, 2011: 333-336.
[11] Vo B T, Vo B N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567.
[12] Dominicm S, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56 (8): 3447-3457.
/
〈 | 〉 |